Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096101    DOI: 10.1088/1674-1056/abeb11

Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles

Xu Zhang(张旭)1, Ningning Liu(刘宁宁)1, Zongyuan Tang(唐宗元)1, Yingning Miao(缪应宁)1, Xiangshen Meng(孟祥申)2, Zhenghong He(何正红)2, Jian Li(李建)2, Minglei Cai(蔡明雷)3,4, Tongzhou Zhao(赵桐州)3,4, Changyong Yang(杨长勇)3,4, Hongyu Xing(邢红玉)1, and Wenjiang Ye(叶文江)1,†
1 School of Sciences, Hebei University of Technology, Tianjin 300401, China;
2 School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
3 Hebei Jiya Electronics Co. Ltd., Shijiazhuang 050071, China;
4 Hebei Provincial Research Center of FPD Engineering Technology, Shijiazhuang 050071, China
Abstract  In order to explore the stability of a liquid crystal (LC) system doped with γ-Fe2O3 nanoparticles, the physical properties (clearing point, dielectric properties), electro-optical properties and residual direct-current voltage (RDCV) of the doped LC system were measured and evaluated at different times. First, the temperature was controlled by precision hot stage, and the clearing point temperature of doped LC was observed and measured by a polarized optical microscope. Using a precision LCR meter, we measured the capacitance-voltage curves of the doped LC system at the temperature of 27 ℃. The dielectric constant of doped LC was calculated by the dualcell capacitance method. Then, the electro-optical properties of the doped LC system were measured. Finally, the RDCV of the doped LC system was measured and calculated. After five months, the parameters of the doped LC system were re-measured and analyzed under the same conditions to evaluate its stability. The experimental results show that, within five months, the clearing point change rate of doped LC is in the range of 0.24%-1.37%, the change of dielectric anisotropy is in the range of 0.035-0.2, the curves of electro-optical properties are basically fitted, and the change rate of saturated RDCV is about 11.2%, which basically indicate that the LC system doped with γ-Fe2O3 nanoparticles has good stability.
Keywords:  γ-Fe2O3 nanoparticles      stability of liquid crystal system      clearing point      dielectric properties      electro-optical properties  
Received:  10 December 2020      Revised:  29 January 2021      Accepted manuscript online:  02 March 2021
PACS:  61.30.-v (Liquid crystals)  
  42.79.Kr (Display devices, liquid-crystal devices)  
  78.15.+e (Optical properties of fluid materials, supercritical fluids and liquid crystals)  
Fund: Project supported by the Natural Science Foundation of Hebei Province of China (Grant Nos. A2019202235 and A2017202004), Research and Practice Project of Hebei Provincial Higher Education and Teaching Reform (Grant No. 2017GJJG018), Research Projects of Undergraduate Education and Teaching Reform in Hebei University of Technology (Grant No. 201802003), the Key Subject Construction Project of Hebei Provincial Universities, and the Special Project of China Association of Higher Education (Grant No. 21LKYB05).
Corresponding Authors:  Wenjiang Ye     E-mail:

Cite this article: 

Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江) Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles 2021 Chin. Phys. B 30 096101

[1] Song J, Liu Y G, Ma J and Xuan L 2006 Chin. Phys. Lett. 23 3285
[2] Ma J, Song J, Liu Y G, Ruan S P and Xuan L 2005 Chin. Phys. Lett. 22 103
[3] Wang H Y, Wu T X, Zhu X Y and Wu S T 2004 J. Appl. Phys. 95 5502
[4] Cho M J, Park H G, Jeong H C, Lee J W, Jung Y H, Kim D H, Kim J H, Lee J W and Seo D S 2014 Liq. Cryst. 41 761
[5] Chaudhary A, Shukla R K, Malik P, Mehra R and Raina K K 2019 Curr. Appl. Phys. 19 1374
[6] Zhu S Q, Pan W and Wang M Y 2005 Acta Photon. Sin. 34 218 (in Chinese)
[7] Abhishek K S, Evgeni P P, Vladimir G C and Hoi S K 2019 J. Mol. Liq. 295 111054
[8] Tripti V, Shivani P, Swadesh K G, Dharmendra P S, Kaushlendra A, Govind P, Sumit K, Pankaj K T and Rajiv M 2017 Liq. Cryst. 45 687
[9] Dai Y Y, Gao L, Wang M H, Zhao X Q, Li T, Tang Z Y, Li Z J, Xing H Y, Zhu J L, Ye W J, Meng X S, He Z H, Li J, Cai M L and Yang C Y 2019 Liq. Cryst. 46 1643
[10] Tang X Z 2010 The Study on Fabrication of Ferroelectric Liquid Crystal Devices with a Uniform and Stabilized Alignment (Ph.D. Dissertation) (Changchun: Graduate University of Chinese Academy of Sciences, and Changchun Institute of Optics, Fine Mechanics and Physics) (in Chinse)
[11] Wen B C, Li J, Lin Y Q, Liu X D, Fu J, Miao H and Zhang Q M 2011 Mater. Chem. Phys. 128 35
[12] Meng X S, Qiu X Y and Li J 2018 J. Southwest Univ.: Nat. Sci. 40 124
[13] Zhang T, Meng X S, He Z H, Lin Y Q, Liu X D, Li D C, Li J and Qiu X Y 2017 Nanomaterials 7 220
[14] Rabia I 2019 Study of Biochemical Fabrication and Applications of Metal-based Nanoparticles and Nanocomposites (MS Thesis) (Beijing: Beijing University of Chemical Technology) (in Chinese)
[15] Dai Y Y, Gao L, Pang Z, Li Z J, Cai M L, Wang X Y, Zhu J L and Ye W J 2018 Chin. J. Liq. Cryst. Disp. 33 175
[16] Gao L, Dai Y Y, Chang Y K, Li Z J, Cai M L, Wang X Y, Xing H Y, Zhu J L and Ye W J 2018 J. Liq. Cryst. Disp. 33 561
[17] Dai Y Y, Gao L, Chang Y K, Li Z J, Cai M L, Wang X Y, Xing H Y, Zhu J L and Ye W J 2019 Liq. Cryst. 46 930
[18] Jiao M Z, Ge Z B, Song Q and Wu S T 2008 Appl. Phys. Lett. 92 061102
[19] Huang K T, Hung Y W, Fang R X, Chao Y T, Lee C, Lin S C, Yu C H, Kao C amd Jen T S 2018 SID Symposium Digest of Technical Papers 49 1711
[20] Ye W J, Yuan R, Dai Y Y, Gao L, Pang Z, Zhu J L, Meng X S, He Z H, Li J, Cai M L, Wang X Y and Xing H Y 2018 Nanomaterials 8 8010005
[21] Liu N N, Wang M H, Tang Z Y, Gao L, Jing S, Gao N, Xing H Y, Meng X S, He Z H, Li J, Cai M L, Wang X Y and Ye W J 2020 Chin. Opt. Lett. 18 033501
[1] Effect of external electric field on crystalline structure anddielectric properties of Bi1.5MgNb1.5O7 thin films
Zhongzhe Liu(刘钟喆), Libin Gao(高莉彬), Kexin Liang(梁可欣), Zhen Fang(方针), Hongwei Chen(陈宏伟), and Jihua Zhang(张继华). Chin. Phys. B, 2021, 30(10): 107703.
[2] Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route
Furhaj Ahmed Sheikh, Muhammad Khalid, Muhammad Shahzad Shifa, H M Noor ul Huda Khan Asghar, Sameen Aslam, Ayesha Perveen, Jalil ur Rehman, Muhammad Azhar Khan, Zaheer Abbas Gilani. Chin. Phys. B, 2019, 28(8): 088701.
[3] Structure instability-induced high dielectric properties in[001]-oriented 0.68Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 crystals
Xiao-Juan Li(李晓娟), Xing Fan(樊星), Zeng-Zhe Xi(惠增哲), Peng Liu(刘鹏), Wei Long(龙伟), Pin-Yang Fang(方频阳), Rui-Hua Nan(南瑞华). Chin. Phys. B, 2019, 28(5): 057701.
[4] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[5] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
[6] Electrical and dielectric characterization of Au/ZnO/n—Si device depending frequency and voltage
I Orak, A Kocyigit, Ş Alındal. Chin. Phys. B, 2017, 26(2): 028102.
[7] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[8] Dielectric behaviors at microwave frequencies and Mössbauer effects of chalcedony, agate, and zultanite
Levent Parali, İsrafil Şabikoğlu, Jiri Tucek, Jiri Pechousek, Petr Novak, Jakub Navarik. Chin. Phys. B, 2015, 24(5): 059101.
[9] Frequency and voltage-dependent electrical and dielectric properties of Al/Co-doped PVA/p-Si structures at room temperature
Ibrahim Yücedağ, Ahmet Kaya, Şemsettin Altındal, Ibrahim Uslu. Chin. Phys. B, 2014, 23(4): 047304.
[10] Dielectric and infrared properties of SrTiO3 single crystal doped by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions
S. Maletic, D. Maletic, I. Petronijevic, J. Dojcilovic, D. M. Popovic. Chin. Phys. B, 2014, 23(2): 026102.
[11] Electrical and dielectric properties of Al/p-Si and Al/perylene/p-Si type diodes in a wide frequency range
Ahmet Kaya, Sedat Zeyrek, Sait Eren San, Şmsettin Altindal. Chin. Phys. B, 2014, 23(1): 018506.
[12] Carbon materials with quasi-graphene layers: the dielectric, percolation properties and the electronic transport mechanism
Lu Ming-Ming, Yuan Jie, Wen Bo, Liu Jia, Cao Wen-Qiang, Cao Mao-Sheng. Chin. Phys. B, 2013, 22(3): 037701.
[13] Pressure dependences of elastic and lattice dynamic properties of AlAs from ab initio calculations
Li Xing-Xiu, Tao Xiao-Ma, Chen Hong-Mei, Ouyang Yi-Fang, Du Yong. Chin. Phys. B, 2013, 22(2): 026201.
[14] Temperature-dependent dielectric properties of Au/Si3N4/n-Si (metal–insulator–semiconductor) structures
T. Ataseven, A. Tataroğlu. Chin. Phys. B, 2013, 22(11): 117310.
[15] Improvement of dielectric tunability and loss tangent of (Ba,Sr)TiO3 thin films with K doping
Zhang Wei-Jie, Dai Jian-Ming, Zhu Xue-Bin, Chang Qing, Liu Qiang-Chun, Sun Yu-Ping. Chin. Phys. B, 2012, 21(9): 097702.
[1] TAO BI-XIU, TAO BI-YOU. DYNAMICS OF PLANAR RELATIVISTIC DOMAIN WALLS[J]. Acta Phys. Sin. (Overseas Edition), 1997, 6(5): 356 -360 .
[2] Chen Zhang-jin, Xu Ke-zun. ELECTRON IMPACT IONIZATION OF HELIUM FROM ITS GROUND AND METASTABLE STATES[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(5): 331 -341 .
[3] Wang Cheng-Zhi, Fang Mao-Fa. Quantum entanglement in a two-dimensional ion trap[J]. Chin. Phys., 2003, 12(3): 287 -293 .
[4] Cao Quan-Jun, Zhang Yi-Men, Zhang Yu-Ming, Lü Hong-Liana, Wang Yue-Hu, Chang Yuan-Cheng, Tang Xiao-Yan. A CAD oriented quasi-analytical large-signal drain current model for 4H-SiC MESFETs[J]. Chin. Phys., 2007, 16(4): 1097 -1100 .
[5] W. B. Cardoso, A. T. Avelar, B.Baseia, N. G. de Almeida. Total teleportation of zero- and one-photon entangled states in running waves[J]. Chin. Phys. B, 2008, 17(1): 60 -63 .
[6] He Guang-Qiang, Zhu Si-Wei, Guo Hong-Bin, Zeng Gui-Hua. Security of quantum key distribution using two-mode squeezed states against optimal beam splitter attack[J]. Chin. Phys. B, 2008, 17(4): 1263 -1268 .
[7] Cao Wen-Hui, Yu Hai-Feng, Tian Ye, Yu Hong-Wei, Ren Yu-Feng, Chen Geng-Hua, Zhao Shi-Ping. Nb/Al-AlOx/Nb junctions with controllable critical current density for qubit application[J]. Chin. Phys. B, 2009, 18(11): 5044 -5046 .
[8] Jin Zhang-Ying, Shen Bai-Fei, Zhang Xiao-Mei, Wang Feng-Chao, Ji Liang-Liang. Energetic-ion generation by the combination of laser pressure and Coulomb explosion[J]. Chin. Phys. B, 2009, 18(12): 5395 .
[9] Zhang Xiao-Long, Zhang Yue-Xia, Wei Hua. Quantum secure direct communication with Greenberger--Horne--Zeilinger-type state (GHZ state) over noisy channels[J]. Chin. Phys. B, 2009, 18(2): 435 -439 .
[10] Wang Fa-Qiang, Zhang Zhi-Ming, Liang Rui-Sheng. Decoherence of two-qubit system in a non-Markovian squeezed reservoir[J]. Chin. Phys. B, 2009, 18(2): 597 -603 .