Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060303    DOI: 10.1088/1674-1056/abea95
GENERAL Prev   Next  

Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory

Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱)
School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
Abstract  This paper proposes a three-dimensional (3D) controlled quantum teleportation scheme for an unknown single-qutrit state. The scheme is first introduced in an ideal environment, and its detailed implementation is described via the transformation of the quantum system. Four types of 3D-Pauli-like noise corresponding to Weyl operators are created by Kraus operators:trit-flip, t-phase-flip, trit-phase-flip, and t-depolarizing. Then, this scheme is analyzed in terms of four types of noisy channel with memory. For each type of noise, the average fidelity is calculated as a function of memory and noise parameters, which is afterwards compared with classical fidelity. The results demonstrate that for trit-flip and t-depolarizing noises, memory will increase the average fidelity regardless of the noise parameter. However, for t-phase-flip and trit-phase-flip noises, memory may become ineffective in increasing the average fidelity above a certain noise threshold.
Keywords:  three-dimensional quantum teleportation      fidelity      Pauli noise      memory channel  
Received:  03 January 2021      Revised:  05 February 2021      Accepted manuscript online:  01 March 2021
PACS:  03.67.Hk (Quantum communication)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.67.-a (Quantum information)  
Fund: Project supported by the Natural Science Research Project of Colleges and Universities in Anhui Province, China (Grant No. KJ2020A0301) and the Science and Technology Project of Wuhu City in 2020 (Grant No. 2020yf48).
Corresponding Authors:  Bao Zhao     E-mail:  bzhao@aust.edu.cn

Cite this article: 

Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱) Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory 2021 Chin. Phys. B 30 060303

[1] Bennett C H, Brassard G, Jozsa R, Peres A, Wootters W K and Crépeau C 1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D, Mattle K, Pan J W, Weinfurter H, Zeilinger A and Zukowski M 1998 Appl. Phys. B: Lasers Opt. 67 749
[3] Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70
[4] Zhang B, Liu X T, Wang J and Tang C J 2016 Int. J. Theor. Phys. 55 1601
[5] Verma V and Prakash H 2016 Int. J. Theor. Phys. 55 2061
[6] Greplova E, Molmer K and Andersen C K 2016 Phys. Rev. A 94 042334
[7] Ramírez M D G, Falaye B J, Sun G H, Cruz-Irisson M and Dong S H 2017 Front. Phys. 12 120306
[8] Sisodia M, Shukla A, Thapliyal K and Pathak A 2017 Quantum Inf. Process. 16 292
[9] Li M, Zhao N, Chen N, Zhu C H and Pei C X 2017 Int. J. Theor. Phys. 56 2710
[10] Yang Y G, Cao S N, Cao W F, Li D, Zhou Y H and Shi W M 2019 Mod. Phys. Lett. B 33 1950070
[11] Li D F, Wang R J and Baagyere E 2019 Quantum Inf. Process. 18 147
[12] Cao Z, Zhang C, He C and Zhang M 2020 Int. J. Theor. Phys. 59 3174
[13] Zhao N and Li W 2020 Int. J. Theor. Phys. 59 2147
[14] Anagha M, Mohan A, Muruganandan T, Behera B K and Panigrahi P K 2020 Quantum Inf. Process. 19 147
[15] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[16] Sun S Y, Li L X and Zhang H S 2020 Int. J. Theor. Phys. 59 1017
[17] Li Y H, Qiao Y, Sang M H and Nie Y Y 2020 Int. J. Theor. Phys. 59 502
[18] Aliloute S, El Allati A and El Aouadi I 2021 Quantum Inf. Process. 20 29
[19] Chen J, Li D, Liu M and Yang Y 2020 IEEE Access 8 28925
[20] Sang Z W 2017 Int. J. Theor. Phys. 56 3400
[21] Hassanpour S and Houshmand M 2016 Quantum Inf. Process. 15 905
[22] Long Y and Shao Z 2019 Sci. Sin. Phys. Mech. Astron. 49 070301
[23] Huo G W, Zhang T Y, Zha X W, Zhang X X and Zhang M Z 2021 Quantum Inf. Process. 20 24
[24] Chen Y X, Du J, Liu S Y and Wang X H 2017 Quantum Inf. Process. 16 201
[25] Sun S Y and Zhang H S 2020 Quantum Inf. Process. 19 120
[26] Luo Y H, Zhong H Sen, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N Le, Lu C Y, Zeilinger A and Pan J W 2019 Phys. Rev. Lett. 123 070505
[27] Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z and Pan J W 2012 Nature 488 185
[28] Horoshko D B, Patera G and Kolobov M I 2019 Opt. Commun. 447 67
[29] Zhan Y B 2007 Chin. Phys. 16 2557
[30] Ma P C, Chen G Bin, Li X W and Zhan Y B 2018 Int. J. Theor. Phys. 57 2233
[31] Oh S, Lee S and Lee H woong 2002 Phys. Rev. A 66 022316
[32] Hou K, Bao D Q, Zhu C J and Yang Y P 2019 Quantum Inf. Process. 18 104
[33] He L M, Wang N and Zhou P 2020 Int. J. Theor. Phys. 59 1081
[34] Singh U, Mishra U and Dhar H S 2014 Ann. Phys. 350 50
[35] Li Y L, Zu C J and Wei D M 2019 Quantum Inf. Process. 18 2
[36] Macchiavello C and Palma G M 2002 Phys. Rev. A 65 050301
[37] D'Arrigo A, Benenti G, Falci G and Macchiavello C 2015 Phys. Rev. A 92 062342
[38] Guo Y N, Tian Q L, Zeng K and Chen P X 2020 Quantum Inf. Process. 19 182
[39] Li Y L, Zu C J, Wei D M and Wang C M 2019 Int. J. Theor. Phys. 58 1350
[40] Zhang Z and Sun M 2020 Phys. Scr. 95 055107
[41] Fonseca A 2019 Phys. Rev. A 100 062311
[42] Liu X S, Long G L, Tong D M and Li F 2002 Phys. Rev. A 65 022304
[43] Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 042320
[44] Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 052331
[45] Bertlmann R A and Krammer P 2008 J. Phys. A: Math. Theor. 41 235303
[46] Weinar R, Laskowski W and Pawlowski M 2013 J. Phys. A: Math. Theor. 46 435301
[1] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[2] Average fidelity estimation of twirled noisy quantum channel using unitary 2t-design
Linxi Zhang(张林曦), Changhua Zhu(朱畅华), Changxing Pei(裴昌幸). Chin. Phys. B, 2019, 28(1): 010304.
[3] Estimation of photon counting statistics with imperfect detectors
Xiao-Chuan Han(韩晓川), Dong-Wei Zhuang(庄东炜), Yu-Xuan Li(李雨轩), Jun-Feng Song(宋俊峰), Yong-Sheng Zhang(张永生). Chin. Phys. B, 2018, 27(7): 074208.
[4] Identifying the closeness of eigenstates in quantum many-body systems
Hai-bin Li(李海彬), Yang Yang(杨扬), Pei Wang(王沛), Xiao-guang Wang(王晓光). Chin. Phys. B, 2017, 26(8): 080502.
[5] An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection
Zhan-Feng Wang(王展峰), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业), Ping Xie(谢平). Chin. Phys. B, 2017, 26(10): 100203.
[6] Fidelity between Gaussian mixed states with quantum state quadrature variances
Hai-Long Zhang(张海龙), Chun Zhou(周淳), Jian-Hong Shi(史建红), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2016, 25(4): 040304.
[7] Computational investigations on polymerase actions in gene transcription and replication: Combining physical modeling and atomistic simulations
Jin Yu(喻进). Chin. Phys. B, 2016, 25(1): 018706.
[8] Decay of N-qubit GHZ states in Pauli channels
Chen Xiao-Yu, Wang Ting-Ting. Chin. Phys. B, 2015, 24(8): 080303.
[9] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing, Gao Fang, Wang Yao-Xiong, Kuang Sen, Shuang Feng. Chin. Phys. B, 2015, 24(3): 034208.
[10] Statistical properties of coherent photon-subtracted two-mode squeezed vacuum and its application in quantum teleportation
Zhang Guo-Ping, Zheng Kai-Min, Liu Shi-You, Hu Li-Yun. Chin. Phys. B, 2014, 23(5): 050301.
[11] Instability, adiabaticity, and controlling effects of external fields for the dark state in a homonuclear atom–tetramer conversion system
Meng Shao-Ying, Chen Xi-Hao, Wu Wei, Fu Li-Bin. Chin. Phys. B, 2014, 23(4): 040306.
[12] Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement
Liao Xiang-Ping, Fang Mao-Fa, Fang Jian-Shu, Zhu Qian-Quan. Chin. Phys. B, 2014, 23(2): 020304.
[13] Phase transition of Bose–Einstein condensate under decoherence
Zheng Qiang, Yi Shan-Feng, Hu Chang-Gang. Chin. Phys. B, 2014, 23(2): 026401.
[14] Entanglement fidelity of channel adaptive quantum codes
Zhan Yun, Chen Xiao-Yu. Chin. Phys. B, 2013, 22(1): 010308.
[15] Level crossing in a two-photon Jaynes–Cummings model
Ren Xue-Zao,Cong Hong-Lu,Liao Xu,Li Lei. Chin. Phys. B, 2012, 21(5): 054210.
No Suggested Reading articles found!