Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087502    DOI: 10.1088/1674-1056/abea91
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons

Qian Liu(刘倩)1,2, Min Tong(佟敏)1, Xin-Guo Zhao(赵新国)1,2,†, Nai-Kun Sun(孙乃坤)3,‡, Xiao-Fei Xiao(肖小飞)1,2, Jie Guo(郭杰)1,2, Wei Liu(刘伟)1,2, and Zhi-Dong Zhang(张志东)1,2
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China;
3 School of Science, Shenyang Ligong University, Shenyang 110159, China
Abstract  The effects of wheel speeds and high-pressure hydrogen treatment on phase evolution, microstructure, and magnetocaloric properties in La0.5Pr0.5Fe11.4Si1.6 melt-spun ribbons are studied in this work. The results reveal that the increase of wheel speed is beneficial to the formation of cubic NaZn13-type phase and the grain refinement. The optimized wheel speed for microstructural and magnetocaloric properties is 30 m/s. The largest entropy change of 18.1 J/kg·K at 190 K under a magnetic field change of 0 T-5 T is obtained in La0.5Pr0.5Fe11.4Si1.6 ribbons melt-spun at 30 m/s. After a high-pressure hydrogen treatment of 50 MPa, the Curie temperature of the ribbons prepared at 30 m/s is adjusted to about 314 K and the large -ΔSM of 17.9 J/kg·K under a magnetic field change of 0 T-5 T is achieved at room temperature with almost none hysteresis loss. The small thermal and magnetic hysteresis and the large -ΔSM make the La0.5Pr0.5Fe11.4Si1.6 hydride ribbons appropriate for magnetic refrigerant applications around room temperature.
Keywords:  La-Pr-Fe-Si      melt-spun ribbon      hydrides      magnetic properties      microstructure  
Received:  24 December 2020      Revised:  25 January 2021      Accepted manuscript online:  01 March 2021
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51771197), the Fund from the Chinese Academy of Sciences (Grant No. KJZD-EW-M05), and the Liaoning Revitalization Talents Program, China (Grant No. XLYC1807122).
Corresponding Authors:  Xin-Guo Zhao, Nai-Kun Sun     E-mail:  xgzhao@imr.ac.cn;naikunsun@163.com

Cite this article: 

Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东) Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons 2021 Chin. Phys. B 30 087502

[1] Pecharsky V K and Gschneidner K A 1997 Phys. Rev. Lett. 78 4494
[2] Tegus O, Bruck E, Buschow K H J and de Boer F R 2002 Nature 415 150
[3] Bao L F, Hu F X, Chen L, Wang J, Sun J R and Shen B G 2012 Appl. Phys. Lett. 101 162406
[4] He C, Zhang M X, Shao Y Y, Dong J D, Yan A R and Liu J 2015 Chin. Phys. B 24 077503
[5] Chen Y F, Wang F, Shen B G, Hu F X, Cheng Z H, Wang G J and Sun J R 2002 Chin. Phys. 11 741
[6] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[7] Xu L, Zhao J L, Yang J J, Zhang H G, Liu D M, Yue M and Jang Y J 2017 Chin. Phys. B 26 067502
[8] Niitsu K and Kainuma R 2012 Intermetallics 20 160
[9] Liu J, Krautz M, Skokov K, Woodcock T G and Gutfleisch O 2011 Acta Mater. 59 3602
[10] Yang L, Li J, Tu D F, Strickland J C J, Hu Q D, Dong H B and Li J G 2020 Acta Metall. Sin. (Engl. Lett.) 33 1535
[11] Zhang H, Hu F X, Sun J R and Shen B G 2013 Sci. China: Phys. Mech. Astron. 56 2302
[12] Zhang P, Liu J, Shao Y and Yan A 2017 Mater. Lett. 193 34
[13] Yan A, Muller K H and Gutfleisch O 2005 J. Appl. Phys. 97 036102
[14] Yang J, Shao Y Y, Feng Z X and Liu J 2018 J. Magn. Magn. Mater. 452 473
[15] Hou X L, Han N, Xue Y, Lu Q Q, Wang X C and Phan M H 2016 J. Electron. Mater. 45 4730
[16] Santana R P, de Oliveira N A and von Ranke P J 2011 J. Alloys Compd. 509 6346
[17] Yan A, Mueller K H and Gutfleisch O 2008 J. Alloys Compd. 450 18
[18] Shen J, Li Y X, Wang F, Wang G J and Zhang S Y 2004 Chin. Phys. 13 1134
[19] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416
[20] Sun N K, Guo J, Zhao X G, Si P Z, Huang J H and Zhang Z D 2015 Appl. Phys. Lett. 106 092401
[21] Hou X L, Xue Y, Liu C Y, Xu H, Han N, Ma C W and Phan M H 2015 Nanoscale Res. Lett. 10 1
[22] Liu X B, Altounian Z and Tu G H 2004 J. Phys.: Condes. Matter 16 8043
[23] Fujieda S, Fukamichi K and Suzuki S 2013 J. Alloys Compd. 566 196
[24] Shen J, Gao B, Zhang H W, Hu F X, Li Y X, Sun J R and Shen B G 2007 Appl. Phys. Lett. 91 142504
[25] Zhao J L, Shen J, Hu F X, Li Y X, Sun J R and Shen B G 2010 J. Appl. Phys. 107 113911
[26] Rosca M, Balli M, Fruchart D, Gignoux D, Hlil E K, Miraglia S, Ouladdiaf B and Wolfers P 2010 J. Alloys Compd 490 50
[27] Moze O, Kockelmann W, Liu J P, de Boer F R and Buschow K H J 1999 J. Magn. Magn. Mater. 195 391
[28] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[29] Gschneidner K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[30] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853
[31] Balli M, Fruchart D and Gignoux D 2007 J. Phys.: Condes. Matter 19 236230
[32] Sharma V K, Chattopadhyay M K and Roy S B 2007 J. Phys. D-Appl. Phys. 40 1869
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[7] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[8] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[9] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[10] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[11] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[12] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[13] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[14] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[15] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
No Suggested Reading articles found!