Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044213    DOI: 10.1088/1674-1056/abea8d
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes

Hanying Deng(邓寒英)1,†, Changming Huang(黄长明)2, Yingji He(何影记)1, and Fangwei Ye(叶芳伟)3,‡
1 School of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; 2 Department of Electronic Information and Physics, Changzhi University, Changzhi 046011, China; 3 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  A distant-neighbor quantum-mechanical method is used to study the nonlinear optical wave mixing in graphene nanoflakes (GNFs), including sum-and difference-frequency generation, as well as four-wave mixing. Our analysis shows that molecular-scale GNFs support quantum plasmons in the visible spectrum region, and significant enhancement of nonlinear optical wave mixing is achieved. Specifically, the second-and third-order wave-mixing polarizabilities of GNFs are dramatically enhanced, provided that one (or more) of the input or output frequencies coincide with a quantum plasmon resonance. Moreover, by embedding a cavity into hexagonal GNFs, we show that one can break the structural inversion symmetry and enable otherwise forbidden second-order wave mixing, which is found to be enhanced by the quantum plasmon resonance too. This study reveals that the molecular-sized graphene could be used in the quantum regime for nanoscale nonlinear optical devices and ultrasensitive molecular sensors.
Keywords:  quantum plasmons      nonlinear optical wave mixing      graphene nanoflakes  
Received:  17 December 2020      Revised:  09 February 2021      Accepted manuscript online:  01 March 2021
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.An (Optical susceptibility, hyperpolarizability)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11947007), the Natural Science Foundation of Guangdong Province, China (Grant No. 2019A1515011499), and the Department of Education of Guangdong Province, China (Grant No. 2019KTSCX087).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟) Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes 2021 Chin. Phys. B 30 044213

1 Boltasseva A and Atwater H A 2011 Science 331 290
2 Hess O, Pendry J B, Maier, S A, Oulton R F, Hamm J M and Tsakmakidis K L 2012 Nat. Mater. 11 573
3 Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
4 Chen S, Li Z, Liu W, Cheng H and Tian J 2019 Adv. Mater. 31 1802458.
5 Li Z, Liu W, Cheng H and Chen S 2020 Sci. China-Phys. Mech. Astron. 63 284202
6 Berini P and de Leon I D 2011 Nat. Photon. 6 16
7 Giannini, V, Fernandez-Dominguez A I, Heck S C and Maier S A 2011 Chem. Rev. 111 3888
8 Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
9 Atwater H A and Polman A 2010 Nat. Mater. 9 205
10 Panoiu N C and Osgood R M 2007 Opt. Lett. 32 2825
11 Clavero C 2014 Nat. Photon. 8 95
12 Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442
13 Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
14 Ko K D, Kumar A, Fung K H, Ambekar R, Liu G L, Fang N X and Toussaint K C 2011 Nano Lett. 11 61
15 Yan L, Guan M and Meng S 2018 Nanoscale 10 8600
16 Harutyunyan H, Volpe G, Quidant R and Novotny L 2012 Phys. Rev. Lett. 108 217403
17 Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
18 Pelton M and Bryant G W Introduction to Metal-nanoparticle Plasmonics(Hoboken: Wiley)
19 Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
20 Sol\'ís D M, Taboada J M, Obelleiro F, Liz-Marzan L M and de Abajo F J G 2014 ACS Nano 8 7559
21 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
22 Koppens F H L, Chang D E and De Abajo F J G 2011 Nano Lett. 11 3370
23 Yan H, Li Z, Li X, Zhu W, Avouris P and Xia F 2012 Nano Lett. 12 3766
24 Cox J D and de Abajo F J G 2014 Nat. Commun. 5 5725
25 Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H, Liang X, Zettl A and Shen Y 2011 Nat. Nanotechnol. 6 630
26 Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, De Abajo F J G, Nordlander P, Zhu X and Halas N J 2014 Nano Lett. 14 299
27 Gerislioglu B, Ahmadivand A and Pala N 2017 Opt. Mater. 73 729
28 Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749
29 de Abajo F J G 2014 ACS Photon. 1 135
30 Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G and Wang F 2011 Nature 471 617
31 Ruffieux P, Wang S, Yang B, Sànchez-Sànchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Müllen K and Fasel R 2016 Nature 531 489
32 Cox J D, Silveiro I and De Abajo F J G 2015 Acs Nano 10 1995
33 Deng H, Manrique D Z, Chen X, Panoiu N C and Ye F 2018 APL Photon. 3 016102
34 Manrique D Z, You J W, Deng H, Ye F and Panoiu N C 2017 J. Phys. Chem. C 121 27597
35 Boyd R W Nonlinear Optics. (3rd edn.) (Academic Press)
36 Tame M S, Mcenery K R, özdemir K, Lee J, Maier S A and Kim M S 2013 Nat. Phys. 9 329
37 Bozhevolnyi S I and Mortensen N A 2016 Nanophotonics 6 1185
38 Zayats A V, Smolyaninov I I and Maradudin I I 2005 Phys. Rep. 408 131
39 Yamamoto N, Hu C, Hagiwara S and Watanabe K 2015 Appl. Phys. Express 8 045103
40 Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401
41 Cox J D and De Abajo F J G 2015 ACS Photon. 2 306
42 Cox J D and de Abajo F J G 2019 Acc. Chem. Res. 52 2536
43 Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N and Kockaert P 2012 Opt. Lett. 37 1856
44 Tthakur S, Semnani B, Safavi-Naeini S and Majedi A H 2019 Sci. Rep. 9 10540
45 An Y Q, Rowe J E, Dougherty D B, Lee J U and Diebold A C 2014 Phys. Rev. B 89 115310
46 Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J and Osgood Jr R M 2013 Phys. Rev. X 3 021014
47 Kumar N, Kumar J, Gerstenkorn, Wang R, Chiu H Y, Smirl A L and Zhao H 2013 Phys. Rev. B 87 121406
48 Mikhailov A S 2007 Eur. Lett. 79 417
49 Lundeberg M B, Gao Y, Asgari R, Tan C, Van Duppen B, Autore M, Alonso-Gonzalez P, Woessner A, Watanabe K and Taniguchi T 2017 Science 357 187
50 Ezawa M 2007 Phys. Rev. B 76 245415
51 Clementi E and Raimondi D L 1963 J. Chem. Phys. 38 2686
[1] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[3] Fu Song, Lee Cun-biao. ON THE BREAKDOWN OF A LONG STREAK IN A TRANSITIONAL BOUNDARY LAYER[J]. Chin. Phys., 2000, 9(7): 508 -514 .
[4] Wang Wei-Tian, Yang Guang, Chen Zheng-Hao, Zhou Yue-Liang, Lü Hui-Bin, Yang Guo-Zhen. Large third-order optical nonlinearity in Au nanometre particle doped BaTiO3 composite films near the resonant frequency[J]. Chin. Phys., 2002, 11(12): 1324 -1327 .
[5] Guo Guang-Can, Chen Li-Bing, Gu Yong-Jian, Zheng Yi-Zhuang. Implementation of nonlocal quantum swap operation on two entangled pairs[J]. Chin. Phys., 2002, 11(6): 529 -532 .
[6] Xu Liang-Ying, Liu Li-Ren, Zhou Chang-He, Liu You-Wen. Optically fixed photorefractive correlator[J]. Chin. Phys., 2002, 11(7): 710 -713 .
[7] Wang Jun, Cao Li, Wu Da-Jin. Stochastic resonance of bias signal-modulated noise in a single-mode laser[J]. Chin. Phys., 2004, 13(11): 1811 -1814 .
[8] Xu Xing-Sheng, Wang Yi-Quan, Han Shou-Zheng, Cheng Bing-Ying, Zhang Dao-Zhong. Two-dimensional ring-type photonic crystals in the near-infrared region[J]. Chin. Phys., 2004, 13(9): 1474 -1476 .
[9] Lin Xiu, Li Hong-Cai, Yang Rong-Can. Probabilistic teleportation of an unknown N-atom state using a two-atom nonmaximally entangled state in cavity QED[J]. Chin. Phys., 2007, 16(3): 624 -629 .
[10] Zhang Dong-Hai, Zhao Hui-Hua, Liu Fang, He Chun-Le, Jia Hui-Ming, Li Xue-Qin, Li Zhen-Yu, Li Jun-Sheng. Intermittency in 3.7 A GeV 16O-emulsion interactions[J]. Chin. Phys., 2007, 16(9): 2689 -2700 .