Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056106    DOI: 10.1088/1674-1056/abe9a7
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation

Yong Wang(王勇)1, Qing Liao(廖庆)2, Ming Liu(刘茗)3, Peng-Fei Zheng(郑鹏飞)3, Xinyu Gao(高新宇)1, Zheng Jia(贾政)1, Shuai Xu(徐帅)2, and Bing-Sheng Li(李炳生)2,4,†
1 China Institute for Radiation Protection, Taiyuan 030006, China;
2 State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China;
3 Southwestern Institute of Physics, Chengdu 610041, China;
4 Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  Lattice defects induced by ion implantation into SiC have been widely investigated in the decades by various techniques. One of the non-destructive techniques suitable to study the lattice defects in SiC is the optical characterization. In this work, confocal Raman scattering spectroscopy and photoluminescence spectrum have been used to study the effects of 134-keV H$_{2}^{ + }$ implantation and thermal treatment in the microstructure of 6H-SiC single crystal. The radiation-induced changes in the microstructure were assessed by integrating Raman-scattering peaks intensity and considering the asymmetry of Raman-scattering peaks. The integrated intensities of Raman scattering spectroscopy and photoluminescence spectrum decrease with increasing the fluence. The recovery of the optical intensities depends on the combination of the implantation temperature and the annealing temperature with the thermal treatment from 700 ℃ to 1100 ℃. The different characterizations of Raman scattering spectroscopy and photoluminescence spectrum are compared and discussed in this study.
Keywords:  SiC      H2+ implantation      Raman scattering spectroscopy      photoluminescence spectrum  
Received:  22 January 2021      Revised:  21 February 2021      Accepted manuscript online:  25 February 2021
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Jh (Ion radiation effects)  
  78.30.-j (Infrared and Raman spectra)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075194), the Sichuan Provincial Science and Technology Program, China (Grant No. 2020ZYD055), and the National Key Research and Development Program of China (Grant No. 2017YFE0301306).
Corresponding Authors:  Bing-Sheng Li     E-mail:  libingshengmvp@163.com

Cite this article: 

Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生) Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation 2021 Chin. Phys. B 30 056106

[1] Park C H, Cheong B H, Lee K H and Chang K J 1994 Phys. Rev. B 49 4485
[2] Snead L L, Nozawa T, Katoh Y, Byun T S, Kondo S and Petti D A 2007 J. Nucl. Mater. 371 329
[3] Tan L, Allen T R, Hunn J D and Miller J H 2008 J. Nucl. Mater. 372 400
[4] Jiang W, Weber W J, Thevuthasan S and Grotzschel R 2000 Nucl. Instrum. Method B 166-167 374
[5] Li B S, Wang Z G and Jin Y F 2013 Nucl. Instrun. Method B 316 239
[6] Zhang L and Li B S 2017 Physica B 508 104
[7] Daghbouj N, Li B S, Callisti M, Sen H S, Jin J, Ou X, Karlik M and Polcar T 2020 Acta Mater. 188 609
[8] Daghbouj N and Li B S, Karlik M and Delcemy A 2019 Appl. Surf. Sci. 466 141
[9] Gregory R B, Wetteroth T A, Wilson S R, Holland O W and Thomas D K 1999 Appl. Phys. Lett. 75 2623
[10] Jia Q, Huang K, You T G, Yi A L, Lin J J, Zhang S B, Zhou M, Zhang B, Yu W J, Ou X and Wang X 2018 Appl. Phys. Lett. 112 192102
[11] Zhang H H, Zhang C H, Li B S, Zhou L H, Yang Y T and Fu Y C 2009 Acta Phys. Sin. 58 3302 (in Chinese)
[12] Li B S, Zhang C H, Zhang H H, Shibayama T and Yang Y T 2011 Vacuum 86 452
[13] Du Y Y, Li B S, Wang Z G, Sun J R, Yao C F, Pang L L, Zhu Y B, Cui M H, Zhang H P, Li Y F, Wang J, Zhu H P, Song P and Wang D 2014 Acta Phys. Sin. 63 216101 (in Chinese)
[14] Li B S, Liu H P, Kang L, Zhang T M, Xu L J and Xiong An L 2019 J. Eur. Cer. Soc. 39 4307
[15] Zhang L M, Jiang W L, Pan C L, Fadanelli R C, Ai W S, Chen L and Wang T S 2019 J. Raman Spectroscopy 50 1197
[16] Heliou R, Brebner J L and Roorda S 2001 Nucl. Instrum. Method B 175-177 268
[17] http://www.srim.org
[18] Harima H 2006 Microelectronic Eng. 83 126
[19] Kawai Y, Maeda T, Nakamura Y, Sakurai Y, Iwaya M, Kamiyama S, Amano H, Akasaki I, Yochimoto M, Furusho T, Kinoshita H and Shiomi H 2006 Mater. Sci. Forum 527-529 263
[20] Nakashima S and Harima H 1997 Phys. Stat. Sol. (a) 162 39
[21] Sorieul S, Costantini J M, Gosmain L, Thome L and Grob J J 2006 J. Phys.: Condens. Matter 18 5235
[22] Huang X, Ninio F, Brown L J and Prawer S 1995 J. Appl. Phys. 77 5910
[23] Wang P F, Huang L, Zhu W and Ruan Y F 2012 Solid State Commun. 152 887
[24] Li B S, Krsjak V, Degmova J, Wang Z G, Shen T L, Li H, Sojak S, Slugen V and Kawasuso A 2020 J. Nucl. Mater. 535 152180
[25] Liu Y Z, Li B S and Zhang L 2017 Chin. Phys. Lett. 34 052801
[26] Han W T and Li B S 2018 J. Nucl. Mater. 504 161
[27] Liu H P, L i J Y and Li B S 2018 Chin. Phys. Lett. 35 096103
[28] Gao F, Weber W J, Posselt M and Belko V 2004 Phys. Rev. B 69 245205
[29] Richter H, Wang Z P and Ley L 1981 Solid State Commun. 39 625
[30] Zhang Y, Weber W J, Jiang W, Hallen A and Possnert G 2002 J. Appl. Phys. 91 6388
[31] Jagielski J and Thome L 2009 Appl. Phys. A 97 147
[1] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[2] Serverless distributed learning for smart grid analytics
Gang Huang(黄刚), Chao Wu(吴超), Yifan Hu(胡一帆), and Chuangxin Guo(郭创新). Chin. Phys. B, 2021, 30(8): 088802.
[3] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[4] Magneto-transport properties of thin flakes of Weyl semiconductor tellurium
Nan Zhang(张南), Bin Cheng(程斌), Hui Li(李惠), Lin Li(李林), and Chang-Gan Zeng(曾长淦). Chin. Phys. B, 2021, 30(8): 087304.
[5] HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields
Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威). Chin. Phys. B, 2021, 30(7): 073201.
[6] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[9] Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak
Jing-Chun Li(李景春), Jia-Qi Dong(董家齐), Xiao-Quan Ji(季小全), and You-Jun Hu(胡友俊). Chin. Phys. B, 2021, 30(7): 075203.
[10] Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(7): 077101.
[11] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[12] Constraints on the kinetic energy of type-Ic supernova explosion from young PSR J1906+0746 in a double neutron star candidate
Yi-Yan Yang(杨佚沿), Cheng-Min Zhang(张承民), Jian-Wei Zhang(张见微), and De-Hua Wang (王德华). Chin. Phys. B, 2021, 30(6): 068703.
[13] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[14] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[15] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
No Suggested Reading articles found!