Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067802    DOI: 10.1088/1674-1056/abe92b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films

Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋)
Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Abstract  The two-dimensional (2D) Ruddlesden-Popper-type perovskites, possessing tunable bandgap, narrow light emission, strong quantum confinement effect, as well as a simple preparation method, are identified as a new generation of candidate materials for efficient light-emitting diodes. However, the preparation of high-quality quasi-2D perovskite films is still a challenge currently, such as the severe mixing of phases and a high density of defects within the films, impeding the further promotion of device performance. Here, we prepared the quasi-2D PEA2MAn-1PbnBr3n+1 perovskite films by a modified spin-coating method, and the phases with large bandgap were effectively suppressed by the vacuum evaporation treatment. We systematically investigated the optical properties and stability of the optimized films, and the photoluminescence (PL) quantum yield of the treated films was enhanced from 23% to 45%. We also studied the emission mechanisms by temperature-dependent PL spectra. Moreover, the stability of films against moisture, ultraviolet light, and heat was also greatly improved.
Keywords:  quasi-2D perovskite films      vacuum evaporation      optical properties      stability  
Received:  14 January 2021      Revised:  19 February 2021      Accepted manuscript online:  24 February 2021
PACS:  78.40.Fy (Semiconductors)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774318, 12074347, 12004346, and 61935009) and the Open Fund of State Key Laboratory of Integrated Optoelectronics (Grant No. IOSKL2020KF04).
Corresponding Authors:  Xu Chen, Zhi-Feng Shi     E-mail:  shizf@zzu.edu.cn;xchen@zzu.edu.cn

Cite this article: 

Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋) Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films 2021 Chin. Phys. B 30 067802

[1] Zhang F, Zhong H Z, Chen C, Wu X G, Hu X M, Huang H L, Han J B, Zou B S and Dong Y P 2015 ACS Nano 9 4533
[2] Li Y, Shi Z, Liang W Q, Wang L, Li S, Zhang F, Ma Z, Wang Y, Tian Y, Wu D, Li X, Zhang Y, Shan C and Fang X S 2020 Mater. Horiz. 7 530
[3] Yang J X, Zhang P, Wang J P and Wei S H 2020 Chin. Phys. B 29 108401
[4] Shen Z H, Song P J, Qiao B, Cao J Y, Bai Q Y, Song D D, Xu Z, Zhao S L, Zhang G Q and Wu Y J 2019 Chin. Phys. B 28 086102
[5] Li Y, Shi Z F, Li X J and Shan C X 2019 Chin. Phys. B 28 017803
[6] Lin K, Xing J, Quan L N, Arquer F P G D, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H and Wei Z H 2018 Nature 562 245
[7] Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P and Huang W 2018 Nature 562 249
[8] Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C and Du G 2017 Nano Lett. 17 313
[9] Xing G C, Wu B, Wu X Y, Li M J, Du B, Wei Q, Guo J, Yeow E K L, Sum T C and Huang W 2017 Nat. Commun. 8 14558
[10] Richter J, Abdi-Jalebi M, Sadhana A, Tabachnyk M, Rivett J P H, Pazos-Outón L M, Gödel K C, Price M, Deschler F and Friend R H 2016 Nat. Commun. 7 13941
[11] Cheng L, Jiang T, Cao Y, Yi C, Wang N N, Huang W and Wang J P 2020 Adv. Mater. 32 1904163
[12] Chen Y N, Sun Y, Peng J J, Tang J H, Zheng K B and Liang Z Q 2018 Adv. Mater. 30 1703487
[13] Liu X K and Gao F 2018 J. Phys. Chem. Lett. 9 2251
[14] Era M, Morimoto S, Tsutsui T and Saito S 1994 Appl. Phys. Lett. 65 676
[15] Quan L N, Zhao Y B, Arquer P G F, Sabatini R, Walters G, Voznyy O, Comin R, Li Y Y, Fan J Z, Tan H, Pan J, Yuan M J, Bakr O M, Lu Z H, Kim D H and Sargent E H 2017 Nano Lett. 17 3701
[16] Yang X L, Zhang X W, Deng J X, Chu Z M, Jiang Q, Meng J H, Wang P Y, Zhang L Q, Yin Z G and You J B 2018 Nat. Commun. 9 2
[17] Smith M D, Connor B A and Karunadasa H I 2019 Chem. Rev. 119 3104
[18] Ban M Y, Zou Y T, Rivett J P H, Yang Y G, Thomas T H, Tan Y S, Song T, Gao X Y, Credgington D, Deschler F, Sirringhaus H and Sun B Q 2018 Nat. Commun. 9 1
[19] Lee H D, Kim H, Cho H, Cha W, Hong Y, Kim Y H, Sadhanala A, Venugopalan V, Kim J S, Choi J W, Lee C L, Kim D, Yang H C, Friend R H and Lee T W 2019 Adv. Funct. Mater. 29 1901225
[20] Wang Z B, Wang F Z, Sun W D, Ni R H, Hu S Q, Liu J Y, Zhang B, Alsaed A, Hayat T and Tan Z 2018 Adv. Funct. Mater. 28 1804187
[21] Pang P Y, Jin G R, Liang C, Wang B Z, Xiang W, Zhang D L, Xu J W, Hong W, Xiao Z W, Wang L, Xing G C, Chen J S and Ma D G 2020 ACS Nano 14 11420
[22] Jeon N J, Noh J H, Kim Y C, Kim Y C, Yang W S, Ryu S C and Seok S I 2014 Nat. Mater. 13 897
[23] Ma S, Cai M L, Cheng T, Ding X H, Shi X Q, Alsaedi A, Hayat T, Ding Y and Dai S Y 2018 Sci. China Mater. 61 1257
[24] Liang D, Peng Y L, Fu Y P, Shearer M J, Zhang J J, Zhai J Y, Zhang Y, Hamers R J, Andrew T L and Jin S 2016 ACS Nano 10 6897
[25] Ren Z W, Li L, Yu J H, Ma R M, Xiao X T, Chen R, Wang K, Sun X W, Jin W J and Choy W C H 2020 ACS Energy Lett. 5 2569
[26] Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D and Rand B P 2017 Nat. Photon. 11 108
[27] Yang X L, Chu Z M, Meng J H, Yin Z G, Zhang X W, Deng J X and You J B 2019 J. Phys. Chem. Lett. 10 2892
[28] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H and Lee T W 2015 Science 350 1222
[29] Yuan S, Wang Z K, Xiao L X, Zhang C F, Yang S Y, Chen B B, Ge H T, Tian Q S, Jin Y and Liao L S 2019 Adv. Mater. 31 1904319
[30] Shi Z F, Li S, Li Y, Ji H F, Li X J, Wu D, Xu T T, Chen Y S, Tian Y T, Zhang Y T, Shan C X and Du G T 2018 ACS Nano 12 1462
[31] Zhang F, Shi Z F, Ma Z Z, Li Y, Li S, Wu D, Xu T T, Li X J, Shan C X and Du G T 2018 Nanoscale 10 20131
[32] Ma Z Z, Shi Z F, Qin C C, Cui M H, Yang D W, Wang X J, Wang L T, Ji X Z, Chen X, Sun J L, Wu D, Zhang Y, Li X J, Zhang L J and Shan C X 2020 ACS Nano 14 4475
[33] Savenije T J, Ponseca C S, Kunneman L, Abdellah M, Zheng K B, Tian Y X, Zhu Q S, Canton S E, Scheblykin I G, Pullerits T, Yartsev A and Sundström V 2014 J. Phys. Chem. Lett. 5 2189
[34] Wang S, Ma J Q, Li W C, Wang J, Wang H Z, Shen H Z, Li J Z, Wang J Q, Luo H M and Li D H 2019 J. Phys. Chem. Lett. 10 2546
[35] Rudin S, Reinecke T L and Segall B 1990 Phys. Rev. B 42 11218
[36] Ma Z, Shi Z, Wang L, Zhang F, Wu D, Yang D, Chen X, Zhang Y, Shan C and Li X J 2020 Nanoscale 12 3637
[37] Cao Z, Hu F, Man Z, Zhang C, Zhang W, Wang X and Xiao M 2020 Chin. Phys. Lett. 37 127801
[1] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[2] Identification of unstable individuals in dynamic networks
Dongli Duan(段东立), Tao Chai(柴涛), Xixi Wu(武茜茜), Chengxing Wu(吴成星), Shubin Si(司书宾), and Genqing Bian(边根庆). Chin. Phys. B, 2021, 30(9): 090501.
[3] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[4] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[5] Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system
Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松). Chin. Phys. B, 2021, 30(7): 074208.
[6] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[7] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[8] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[9] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[10] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[11] Improved nonlinear parabolized stability equations approach for hypersonic boundary layers
Shaoxian Ma(马绍贤), Yi Duan(段毅), Zhangfeng Huang(黄章峰), and Shiyong Yao(姚世勇). Chin. Phys. B, 2021, 30(5): 054701.
[12] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[13] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[14] Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2021, 30(4): 048506.
[15] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
No Suggested Reading articles found!