Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 037503    DOI: 10.1088/1674-1056/abe3f4
RAPID COMMUNICATION Prev   Next  

Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer

Congli He(何聪丽)1,†, Qingqiang Chen(陈庆强)1,†, Shipeng Shen(申世鹏)1, Jinwu Wei(魏晋武)2, Hongjun Xu(许洪军)2, Yunchi Zhao(赵云驰)2, Guoqiang Yu(于国强)2, and Shouguo Wang(王守国)1,
1 Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The binary alloy/ferromagnetic metal heterostructure has drawn extensive attention in the research field of spin-orbit torque (SOT) due to the potential enhancement of SOT efficiency via composition engineering. In this work, the magnetic properties and SOT efficiency in the Pt100-xNix/Ni78Fe22 bilayers were investigated via the spin-torque ferromagnetic resonance (ST-FMR) technique. The effective magnetic anisotropy field and effective damping constant extracted by analyzing the ST-FMR spectra show a weak dependence on the Ni concentration. The effective spin-mixing conductance of $8.40\times 10^14 \Omega ^-1\cdot\rm m^-2$ and the interfacial spin transparency T in of 0.59 were obtained for the sample of Pt70Ni30/NiFe bilayer. More interestingly, the SOT efficiency that is carefully extracted from the angular dependence of ST-FMR spectra shows a nonmonotonic dependence on the Ni concentration, which reaches the maximum at x = 18. The enhancement of the SOT efficiency by alloying the Ni with Pt shows potential in lowering the critical switching current. Moreover, alloying relatively cheaper Ni with Pt may promote to reduce the cost of SOT devices.
Keywords:  spin-orbit torque      magnetic doping      spin-torque ferromagnetic resonance  
Published:  22 February 2021
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51901025 and 51625101), the Fundamental Research Funds for the Central Universities, China (Grant No. 310421101), and the Beijing Natural Science Foundation, China (Grant No. Z190007).
Corresponding Authors:  These authors contributed equally. §Corresponding author. E-mail: sgwang@bnu.edu.cn   

Cite this article: 

Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国) Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer 2021 Chin. Phys. B 30 037503

1 Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
2 Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
3 Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Appl. Phys. Lett. 101 122404
4 Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
5 Qiu X, Shi Z, Fan W, Zhou S and Yang H 2018 Adv. Mater. 30 1705699
6 Li Y, Edmonds K W, Liu X, Zheng H and Wang K 2019 Advanced Quantum Technologies 2 1800052
7 Song C, Zhang R, Liao L, Zhou Y, Zhou X, Chen R, You Y, Chen X and Pan F 2020 Progress in Materials Science 100761 (in press)
8 Zheng Z Y, Zhang Y, Zhu D Q, Zhang K, Feng X Q, He Y, Chen L, Zhang Z Z, Liu D J, Zhang Y G, Amiri P K A and Zhao W S 2020 Chin. Phys. B 29 078505
9 Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G and Demokritov S O 2012 Nat. Mater. 11 1028
10 Liu R H, Lim W L and Urazhdin S 2013 Phys. Rev. Lett. 110 147601
11 Duan Z, Smith A, Yang L, Youngblood B, Lindner J, Demidov V E, Demokritov S O and Krivorotov I N 2014 Nat. Commun. 5 5616
12 Awad A A, Durrenfeld P, Houshang A, Dvornik M, Iacocca E, Dumas R K and Akerman J 2017 Nat. Phys. 13 292
13 Emori S, Bauer U, Ahn S M, Martinez E and Beach G S D 2013 Nat. Mater. 12 611
14 Ryu K S, Thomas L, Yang S H and Parkin S 2013 Nat. Nanotechnol. 8 527
15 Yu G Q, Upadhyaya P, Wong K L, Jiang W J, Alzate J G, Tang J S, Amiri P K and Wang K L 2014 Phys. Rev. B 89 104421
16 Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M, Fradin F, Pearson J, Tserkovnyak Y, Wang K, Heinonen O, te Velthuis S and Hoffmann A 2015 Science 349 283
17 Yu G Q, Upadhyaya P, Li X, Li W Y, Kim S K, Fan Y B, Wong K L, Tserkovnyak Y, Amiri P K and Wang K L 2016 Nano Lett. 16 1981
18 Woo S, Litzius K, Kruger B, Im M, Caretta L, Richter K, Mann M, Krone A, Reeve R, Weigand M, Agrawal P, Lemesh I, Mawass M, Fischer P, Klaui M and Beach G 2016 Nat. Mater. 15 501
19 Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K and Wang K L 2017 Nano Lett. 17 261
20 Shu-Fa Li T Z 2020 Chin. Phys. B 29 087102
21 Tian Y Y, Wang S H, Li G, Li H, Li S Q, Zhao Y, Cui X M, Wang J Y, Zou L K and Jin K X 2020 Chin. Phys. B 29 117504
22 Nguyen M H, Zhao M N, Ralph D C and Buhrman R A 2016 Appl. Phys. Lett. 108 242407
23 Zhu L, Ralph D C and Buhrman R A 2018 Phys. Rev. Appl. 10 031001
24 Hu C Y and Pai C F 2020 Advanced Quantum Technologies 3 2000024
25 Obstbaum M, Decker M, Greitner A K, Haertinger M, Meier T N G, Kronseder M, Chadova K, Wimmer S, Kodderitzsch D, Ebert H and Back C H 2016 Phys. Rev. Lett. 117 167204
26 Shu X, Zhou J, Deng J, Lin W, Yu J, Liu L, Zhou C, Yang P and Chen J 2019 Phys. Rev. Mater. 3 114410
27 Chen T Y, Wu C T, Yen H W and Pai C F 2017 Phys. Rev. B 96 104434
28 Demasius K-U, Phung T, Zhang W, Hughes B P, Yang S H, Kellock A, Han W, Pushp A and Parkin S S P 2016 Nat. Commun. 7 10644
29 Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
30 Nguyen M H, Ralph D C and Buhrman R A 2016 Phys. Rev. Lett. 116 126601
31 Ou Y, Ralph D C and Buhrman R A 2018 Phys. Rev. Lett. 120 097203
32 Keller M W, Gerace K S, Arora M, Delczeg-Czirjak E K, Shaw J M and Silva T J 2019 Phys. Rev. B 99 214411
33 Varotto S, Cosset-Ch\'eneau M, Gr\`ezes C, Fu Y, Warin P, Brenac A, Jacquot J F, Gambarelli S, Rinaldi C, Baltz V, Attan\'e J P, Vila L and No\"el P 2020 Phys. Rev. Lett. 125 267204
34 Hibino Y, Taniguchi T, Yakushiji K, Fukushima A, Kubota H and Yuasa S 2020 Phys. Rev. Appl. 14 064056
35 Naito T, Hirashima D S and Kontani H 2010 Phys. Rev. B 81 195111
36 Jo D, Go D and Lee H W 2018 Phys. Rev. B 98 214405
37 Liu L Q, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601
38 He C L, Navabi A, Shao Q M, Yu G Q, Di Wu D, Zhu W H, Zheng C, Li X, He Q L, Razavi S A, Wong K L, Zhang Z Z, Amiri P K and Wang K L 2016 Appl. Phys. Lett. 109 202404
39 He C L, Yu G Q, Grezes C, Feng J F, Zhao Z, Razavi S A, Shao Q M, Navabi A, Li X, He Q L, Li M Y, Zhang J, Wong K L, Wei D, Zhang G Y, Han X F, Amiri P K and Wang K L 2018 Phys. Rev. Appl. 10 034067
40 Wei J W, He C L, Wang X, Xu H J, Liu Y Z, Guang Y, Wan C H, Feng J F, Yu G Q and Han X F 2020 Phys. Rev. Appl. 13 034041
41 Zhu L J, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett. 123 057203
42 Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S and Saitoh E 2011 J. Appl. Phys. 109 103913
43 Shao Q M, Tang C, Yu G Q, Navabi A, Wu H, He C L, Li J X, Upadhyaya P, Zhang P, Razavi S A, He Q L, Liu Y W, Yang P, Kim S K, Zheng C, Liu Y Z, Pan L, Lake R K, Han X F, Tserkovnyak Y, Shi J and Wang K L 2018 Nat. Commun. 9 3612
44 Pai C F, Ou Y X, Vilela-Leao L H, Ralph D C and Buhrman R A 2015 Phys. Rev. B 92 064426
45 Nan T X, Emori S, Boone C T, Wang X J, Oxholm T M, Jones J G, Howe B M, Brown G J and Sun N X 2015 Phys. Rev. B 91 214416
46 Wang B, Guo Y H, Han B, Yan Z, Wang T, Yang D Z, Fan X L and Cao J W 2020 Appl. Phys. Lett. 116 222402
47 Sagasta E, Omori Y, Isasa M, Gradhand M, Hueso L E, Niimi Y, Otani Y and Casanova F 2016 Phys. Rev. B 94 060412
[1] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[2] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[3] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[4] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[5] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
No Suggested Reading articles found!