Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044208    DOI: 10.1088/1674-1056/abe3f3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Sensitivity enhancement of micro-optical gyro with photonic crystal

Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚)
1 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
Abstract  We propose a core rotation-sensing element for improving the sensitivity of the micro-optical gyroscope using the large nonreciprocal effect with a photonic crystal. The sharp transmission peak of electromagnetically induced transparency in photonic crystal generated from a periodic distribution of cold atoms is sensitive to the rotation. Our numerical results show that the sensitivity of relative rotation is about 50 times higher and the sensitivity of absolute rotation is more than two orders higher than that of the traditional resonant optical gyroscope. Also, the sensitivity of the gyroscope can be manipulated by varying the atomic density, modulation frequency, probe pulse width, and photonic crystal length, etc.
Keywords:  optical nonreciprocal effect      photonic crystal      micro-optical gyro      high sensitivity  
Received:  04 January 2021      Revised:  23 January 2021      Accepted manuscript online:  08 February 2021
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.70.Qs (Photonic bandgap materials)  
  42.79.Gn (Optical waveguides and couplers)  
  42.81.Pa (Sensors, gyros)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804066 and 61773133), Heilongjiang Provincial Natural Science Foundation of China (Grant No. LH2019A005), China Postdoctoral Science Foundation (Grant No. 2018M630337), and Heilongjiang Provincial Postdoctoral Science Foundation (Grant No. LBHZ18062).
Corresponding Authors:  Corresponding author. E-mail: xuebinghrbeu@163.com   

Cite this article: 

Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚) Sensitivity enhancement of micro-optical gyro with photonic crystal 2021 Chin. Phys. B 30 044208

1 Lai Y H, Suh M G, Lu Y K, Shen B Q, Yang Q F, Wang H M, Li J, Lee S H, Yang K Y and Vahala K 2020 Nat. Photon. 4 1
2 Ma H L, Zhang J, Wang L, Lu Y, Ying D and Jin Z H 2015 Opt. Lett. 40 5862
3 Li J, Suh M G and Vahala K 2015 Optica 4 346
4 Lai Y H, Lu Y K, Suh M G, Yuan Z Q and Vahala K 2019 Nature 576 65
5 Kondratiev N M, Lobanov V E, Cherenkov A V, Voloshin A S, Pavlov N G, Koptyaev S and Gorodetsky M L 2017 Opt. Express 25 28167
6 Ren J, Hodaei H, Harari G, Hassan A U, Chow W, Soltani M, Christodoulides D and Khajavikhan M 2017 Opt. Lett. 42 1556
7 Hokmabadi M P, Schumer Alexander, Christodoulides D N and Khajavikhan M 2019 Nature 576 70
8 Biberman A, Shaw M J, Timurdogan E, Wright J B and Wattset M R 2012 Opt. Lett. 37 4236
9 Khial P P, White A D and Hajimiri A 2018 Nat. Photon. 12 671
10 Ma H L, Zhang J J, Wang L L and Jin Z H 2015 Opt. Express 23 15088
11 Wang J J, Feng L S, Tang Y C and Zhi Y Z 2015 Opt. Lett. 40 155
12 Wang J J, Ma H L, Li H Z and Jin Z H 2017 Opt. Lett. 42 3658
13 Matsko A B, Liang W, Savchenkov A A, Ilchenko V S and Maleki L 2017 Phys. Lett. A 382 2289
14 Shahriar M S, Pati G S, Tripathi R, Gopal V, Messall M and Salit K 2007 Phys. Rev. A 75 053807
15 Zhang E K, Yang L, Xue B, Gao Z X and Zhang Y G 2018 Opt. Eng. 57 085106
16 Xie C F, Tang J, Cui D F, Wu D J, Zhang C F, Li C M, Zhen Y Q, Xue C Y and Liu J 2016 Opt. Lett. 41 4783
17 Liang W, Ilchenko V S, Savchenkov A A, Dale E, Eliyahu D, Matsko A B and Maleki L 2017 Optica 4 114
18 Li H Z, Lin Y, Liu L, Ma H L and Jin Z H 2020 Opt. Express 28 18103
19 Wang J J, Feng L S, Wang Q W, Jiao H C and Wang X 2016 Opt. Lett. 41 1586
20 Harris S E 1997 Phys. Today 50 36
21 Lukin M D, Fleischhauer M, Scully M O and Velichansky V L 1998 Opt. Lett. 23 295
22 Li J H, Qu Y, Yu R and Wu Y 2018 Phys. Rev. A 97 023826
23 Zhang Y, Liu Y M, Tian X D, Zheng T Y and Wu J H 2015 Phys. Rev. A 91 013826
24 Artoni M, La Rocca G C and Bassani F 2005 Phys. Rev. E 72 046604
25 Petrosyan D 2007 Phys. Rev. A 76 053823
26 Hua S Y, Wen J M, Jiang X S, Hua Q, Jiang L and Xiao M 2016 Nat. Commun. 7 13657
27 He B, Yang L, Jiang X S and Xiao M 2018 Phys. Rev. Lett. 120 203904
28 Zhang H L, Huang R, Zhang S D, Li Y, Qiu C W, Nori F and Jing H 2020 Nano Lett. 20 7594
29 Kang M S, Butsch A and Russell P St J 2011 Nat. Photon. 5 549
30 Zaman T R, Guo X and Ram R J 2007 Appl. Phys. Lett. 90 023514
31 Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N and Carmon T 2018 Nature 558 569
32 Jing H, Lü H, özdemir S K, Carmon T and Nori F 2018 Optica 5 1424
33 Lü H, Jiang Y J, Wang Y Z and Jing H 2017 Photonics Res. 5 367
34 Jiang Y, Maayani S, Carmon T, Nori F and Jing H 2018 Phys. Rev. Appl. 10 064037
35 Serebryannikov A E 2009 Phys. Rev. B 80 155117
36 Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J and Zhu S Y 2013 Phys. Rev. Lett. 110 093901
37 Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L and Wu J H 2015 Phys. Rev. A 92 053859
38 Horsley S A R, Wu J H, Artoni M and La Rocca G C 2013 Phys. Rev. Lett. 110 223602
39 Liang W, Savchenkov A, Ilchenko V, Griffith R, Cuir E D, Kim S, Matsko A and Maleki L 2017 Opt. Lett. 42 4736
40 Geng J T, Yang L, Zhao S H and Zhang Y G 2020 Opt. Express 28 32907
41 Bendickson J M, Dowling J P and Scalora M 1996 Phys. Rev. E 53 4107
42 Fei Y, He Y M, Wang X D, Yang F H and Li Z F 2018 Chin. Phys. B 27 084213
43 Schilke A, Zimmermann C, Courteille P W and Guerin W 2011 Phys. Rev. Lett. 106 223903
44 Kuhr S, Alt W, Schrader D, Müller M, Gomer V and Meschede D 2001 Science 293 278
[1] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[2] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[3] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[4] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[5] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[6] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[7] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[8] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[9] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[10] Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction
Meng Wu(吴萌), Xin-Yu Liu(刘欣宇), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Bo-Yao Li(李波瑶), Zhi-Yun Hou(侯峙云). Chin. Phys. B, 2019, 28(12): 124202.
[11] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[12] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[13] Confinement of Bloch surface waves in a graphene-based one-dimensional photonic crystal and sensing applications
Xiu-Juan Zou(邹秀娟), Gai-Ge Zheng(郑改革), Yun-Yun Chen(陈云云). Chin. Phys. B, 2018, 27(5): 054102.
[14] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[15] Study on polarization properties of graphene coated D-shaped fiber
Xuejing Liu(刘学静), Luwen Yang(杨禄文), Jingyun Ma(马敬云), Caili Li(李彩丽), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2018, 27(10): 104206.
[1] Lü YAN-NAN, DING E-JIANG. THE INHOMOGENEOUS PERIODIC STATES IN A COUPLED MAP LATTICE[J]. Acta Phys. Sin. (Overseas Edition), 1992, 1(1): 3 -10 .
[2] SI JIN-HAI, ZHAO JIANG, WANG YOU-GUI, YE PEI-XIAN. THEORETICAL STUDIES ON LASER-INDUCED GRATINGS IN ORGANIC PHOTOISOMERS[J]. Acta Phys. Sin. (Overseas Edition), 1996, 5(7): 511 -519 .
[3] HU ZHONG-KUN, LUO JUN. OPTIMUM DURATION OF MEASUREMENT FOR REDUCING THERMAL NOISE LIMITATIONS IN TORSION PENDULUM EXPERIMENTS[J]. Acta Phys. Sin. (Overseas Edition), 1998, 7(2): 81 -88 .
[4] Peng Jin-sheng, Tian Yong-hong, Xu Da-hai, Han Li-bo. INFLUENCE OF THE DIPOLE-DIPOLE INTERACTION BETWEEN ATOMS ON THE PHASE PROPERTIES OF LIGHT[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(4): 252 -260 .
[5] Sun Lian-feng, Mao Jian-min, Chang Bao-he, Pan Zheng-wei, Wang Gang, Zhou Wei-ya. STRUCTURE AND MORPHOLOGY OF CARBON NANOTUBES GROWN ON ZEOLITE-SUPPORTED CATALYSTS BY CHEMICAL VAPOR DEPOSITION[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(7): 545 -550 .
[6] Xue Ju-Kui, Duan Wen-Shan, Lang He. Modulational instability of ion-acoustic waves in a warm plasma[J]. Chin. Phys., 2002, 11(11): 1184 -1187 .
[7] Ruan Cun-Jun, Pang Wen-Ning, Gao Jun-Fang, Shang Ren-Cheng. Study on optical electron polarimeter and measurement of the relative Stokes parameters of weak light[J]. Chin. Phys., 2002, 11(2): 126 -131 .
[8] Zhang Yan-Liang, Jiang Li, Sun Zhen-Rong, Ding Liang-En, Wang Zu-Geng. Effect of four-wave mixing on electromagnetically induced transparency in Λ-type system with a two-photon probe field[J]. Chin. Phys., 2003, 12(2): 174 -177 .
[9] Li Jia-Hua, Yang Wen-Xing, Peng Ju-Cun. Preparation of multicomponent motional coherent and squeezed coherent states of a trapped ion[J]. Chin. Phys., 2004, 13(10): 1700 -1706 .
[10] Hou Chun-Feng, Pei Yan-Bo, Zhou Zhong-Xiang, Sun Xiu-Dong. Bright—dark incoherently coupled photovoltaic soliton pair[J]. Chin. Phys., 2005, 14(2): 349 -352 .