Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087301    DOI: 10.1088/1674-1056/abe3e4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Accurate capacitance-voltage characterization of organic thin films with current injection

Ming Chu(褚明)1, Shao-Bo Liu(刘少博)1, An-Ran Yu(蔚安然)2,†, Hao-Miao Yu(于浩淼)3, Jia-Jun Qin(秦佳俊)4, Rui-Chen Yi(衣睿宸)1, Yuan Pei(裴远)1, Chun-Qin Zhu(朱春琴)1, Guang-Rui Zhu(朱光瑞)1, Qi Zeng(曾琪)5, and Xiao-Yuan Hou(侯晓远)1,‡
1 State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China;
2 State Key Laboratory of ASIC and System, Center of Micro-Nano System, SIST, Fudan University, Shanghai 200433, China;
3 Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China;
4 Department of Physics, Chemistry and Biology(IFM), Linköping University, Linköping SE-581 83, Sweden;
5 School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
Abstract  To deal with the invalidation of commonly employed series model and parallel model in capacitance-voltage (C-V) characterization of organic thin films when current injection is significant, a three-element equivalent circuit model is proposed. On this basis, the expression of real capacitance in consideration of current injection is theoretically derived by small-signal analysis method. The validity of the proposed equivalent circuit and theoretical expression are verified by a simulating circuit consisting of a capacitor, a diode, and a resistor. Moreover, the accurate C-V characteristic of an organic thin film device is obtained via theoretical correction of the experimental measuring result, and the real capacitance is 35.7% higher than the directly measured capacitance at 5-V bias in the parallel mode. This work strongly demonstrates the necessity to consider current injection in C-V measurement and provides a strategy for accurate C-V characterization experimentally.
Keywords:  current injection      organic thin film      capacitance-voltage      parasitic resistance  
Received:  23 December 2020      Revised:  27 January 2021      Accepted manuscript online:  07 February 2021
PACS:  73.23.Ra (Persistent currents)  
  73.61.Le (Other inorganic semiconductors)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  73.40.Cg (Contact resistance, contact potential)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874007 and 12074076).
Corresponding Authors:  An-Ran Yu, Xiao-Yuan Hou     E-mail:  12110190029@fudan.edu.cn;xyhou@fudan.edu.cn

Cite this article: 

Ming Chu(褚明), Shao-Bo Liu(刘少博), An-Ran Yu(蔚安然), Hao-Miao Yu(于浩淼), Jia-Jun Qin(秦佳俊), Rui-Chen Yi(衣睿宸), Yuan Pei(裴远), Chun-Qin Zhu(朱春琴), Guang-Rui Zhu(朱光瑞), Qi Zeng(曾琪), and Xiao-Yuan Hou(侯晓远) Accurate capacitance-voltage characterization of organic thin films with current injection 2021 Chin. Phys. B 30 087301

[1] He Z S, Yu H M, Peng H and Hou X Y 2015 Chin. Phys. B 24 097201
[2] Gong W, Xu Z, Zhao S L, Liu X D, Fan X, Yang Q Q and Kong C 2013 Chin. Phys. B 22 128402
[3] Oklobia O, Komilian S and Sadat-Shafai T 2018 Org. Electron. 61 276
[4] Lee Y S, Park J H and Choi J S 2002 Opt. Mater. 21 433
[5] Li J V, Nardes A M, Liang Z Q, Shaheen S E, Gregg B A and Levi D H 2011 Org. Electron. 12 1879
[6] Lee S H, Lee J H, Kim K H, Yoo S J, Kim T G, Kim J W and Kim J J 2012 Org. Electron. 13 2346
[7] Chen B B, Qiao X F, Liu C M, Zhao C and Chen H C 2013 Appl. Phys. Lett. 102 193302
[8] Garcia-Belmonte G, Munar A, Barea E M, Bisquert J, Ugarte I and Pacios R 2008 Org. Electron. 9 847
[9] Ecker B, Nolasco J C, Pallares J, Marsal L F, Posdorfer J, Paroso J and von Hauf E 2011 Adv. Funct. Mater. 21 2705
[10] Martens H C F, Huiberts J N and Blom P W M 2000 Appl. Phys. Lett. 77 1852
[11] Liu R L, Wang X L and Tang C 2014 Acta Phys. Sin. 63 028105 (in Chinese)
[12] Yu A R, Pei Y, Yi R C, Liu S B, Chu M, Yu H M, Tang Y J, He Z S and Hou X Y 2017 Org. Electron. 46 121
[13] Sharma G D, Saxena D and Roy M S 2001 Synthetic Met. 123 189
[14] Dennler G, Lungenschmied C, Sariciftci N S, Schwodiauer R, Bauer S and Reiss H 2005 Appl. Phys. Lett. 87 163501
[15] Liu Q, He Z Q, Liang C J, Zhao Y, Xiao W K and Li D 2015 Chin. Phys. Lett. 32 056801
[16] Gong W, An T, Liu X Y and Lu G 2019 Chin. Phys. B 28 038501
[17] Takagi K, Nagase T, Kobayashi T and Naito H 2016 Appl. Phys. Lett. 108 053305
[18] Shintaku N, Izawa S, Takagi K, Naito H and Hiramoto M 2017 Org. Electron. 50 515
[19] Boix P P, Garcia-Belmonte G, Munecas U, Neophytou M, Waldauf C and Pacios R 2009 Appl. Phys. Lett. 95 233302
[20] Reis F T, Mencaraglia D, Saada S O, Seguyb I, Oukachmihb M, Jolinatb P and Destruel P. 2003 Synthetic Met. 138 33
[21] Zheng R, Huang W B, Xu W and Cao Y 2014 Chin. Phys. Lett. 31 027703
[22] Yu H M, Yi R C, Li W B, Zhang J W, He Yun, Zeng Q and Hou X Y 2015 J. Phys. D: Appl. Phys. 48 455108
[23] Chu M, Liu S B, Yu A R, Zeng Q, Zhong G Y and Hou X Y 2019 J. Phys. Chem. C 123 17384
[24] Carr J A and Chaudhary S 2012 Appl. Phys. Lett. 100 213902
[25] Yu H M and He Y 2018 Chin. Phys. B 27 067202
[26] Tsai M N, Chang T C, Liu P T, Ko C W, Chen C J and Lo K M 2006 Thin Solid Films 498 244
[27] Kim J M and Kim J J 2019 Org. Electron. 67 43
[28] Li J H, Qiao B, Zhao S L, Song D D, Zhang C W and Xu Z 2020 Org. Electron. 83 105756
[29] Zhang J W, He Y, Chen X Q, Pei Y, Yu H M, Qin J J and Hou X Y 2015 Org. Electron. 21 73
[30] Zhang J W, Qin J J, Yu H M, Chen X Q and Hou X Y 2016 Org. Electron. 28 239
[31] Yu A R, Liu S B, Zeng Q, Yi R C, Yu X X, Hou X Y and Zhong G Y 2019 J. Appl. Phys. 126 204501
[32] von Mensfoort S L M and Coehoorn R 2008 Phys. Rev. Lett. 100 086802
[33] Lonnum J F and Johannessen J S 1986 Electron. Lett. 22 456
[34] Yang K J and Hu C M 1999 IEEE Electron. Dev. 46 1500
[35] Xu H, Tang C, Zhai W J, Liu R L, Rong Z, Fan L Q and Huang W 2014 Synthetic Met. 198 221
[36] Pang H S, Xu H, Tang C, Meng L K, Ding Y, Xiao J, Liu R L, Pang Z Q and Huang W 2019 Org. Electron. 65 275
[1] Photodetectors based on two-dimensional materials and organic thin-film heterojunctions
Jiayue Han(韩嘉悦), Jun Wang(王军). Chin. Phys. B, 2019, 28(1): 017103.
[2] A novel diode string triggered gated-PiN junction device for electrostatic discharge protection in 65-nm CMOS technology
Zhang Li-Zhong (张立忠), Wang Yuan (王源), Lu Guang-Yi (陆光易), Cao Jian (曹健), Zhang Xing (张兴). Chin. Phys. B, 2015, 24(10): 108503.
[3] Effect of alumina thickness on Al2O3/InP interface with post deposition annealing in oxygen ambient
Yang Zhuo (杨卓), Yang Jing-Zhi (杨靖治), Huang Yong (黄永), Zhang Kai (张锴), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(7): 077305.
[4] Localized deep levels in AlxGa1-xN epitaxial films with various Al compositions
Shi Li-Yang (时俪洋), Shen Bo (沈波), Yan Jian-Chang (闫建昌), Wang Jun-Xi (王军喜), Wang Ping (王平). Chin. Phys. B, 2014, 23(11): 116102.
[5] Point defect determination by photoluminescence and capacitance-voltage characterization in a GaN terahertz Gunn diode
Li Liang (李亮), Yang Lin-An (杨林安), Zhou Xiao-Wei (周小伟), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2013, 22(8): 087104.
[6] Characterization of Al2O3/GaN/AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors with different gate recess depths
Ma Xiao-Hua(马晓华), Pan Cai-Yuan(潘才渊), Yang Li-Yuan(杨丽媛), Yu Hui-You(于惠游), Yang Ling(杨凌), Quan Si(全思), Wang Hao(王昊), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃). Chin. Phys. B, 2011, 20(2): 027304.
[7] Performance improvement in pentacene organic thin film transistors by inserting a C60 ultrathin layer
Sun Qin-Jun(孙钦军), Xu Zheng(徐征), Zhao Su-Ling(赵谡玲), Zhang Fu-Jun(张福俊), and Gao Li-Yan(高利岩). Chin. Phys. B, 2011, 20(1): 017306.
[8] Properties of C60 thin film transistor based on polystyrene
Zhou Jian-Lin (周建林), Niu Qiao-Li (牛巧利). Chin. Phys. B, 2010, 19(7): 077305.
[9] Electric dipolar interaction assisted growth of single crystalline organic thin films
Cai Jin-Ming(蔡金明), Zhang Yu-Yang(张余洋), Hu Hao(胡昊), Bao Li-Hong(鲍丽宏), Pan Li-Da(潘理达), Tang Wei(唐卫), Li Guo(李果), Du Shi-Xuan(杜世萱), Shen Jian(沈健), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2010, 19(6): 067101.
[10] ULTRAHIGH DATA DENSITY STORAGE WITH SCANNING TUNNELING MICROSCOPY
Gao Hong-jun (高鸿钧), Shi Dong-xia (时东霞), Zhang Hao-xu (张昊旭), Lin Xiao (林晓). Chin. Phys. B, 2001, 10(13): 179-185.
No Suggested Reading articles found!