Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048102    DOI: 10.1088/1674-1056/abe22c
RAPID COMMUNICATION Prev   Next  

Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate

Xueyan Wang(王雪艳)1,†, Hui Guo(郭辉)1,†, Jianchen Lu(卢建臣)1, Hongliang Lu(路红亮)1,2,‡, Xiao Lin(林晓)1,2, Chengmin Shen(申承民)1,2, Lihong Bao(鲍丽宏)1,2,3, Shixuan Du(杜世萱)1,2,3, and Hong-Jun Gao(高鸿钧)1,2,3
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Epitaxial growth on transition metal surfaces is an effective way to prepare large-area and high-quality graphene. However, the strong interaction between graphene and metal substrates suppresses the intrinsic excellent properties of graphene and the conductive metal substrates also hinder its applications in electronics. Here we demonstrate the decoupling of graphene from metal substrates by germanium oxide intercalation. Germanium is firstly intercalated into the interface between graphene and Ir(111) substrate. Then oxygen is subsequently intercalated, leading to the formation of a GeOx layer, which is confirmed by x-ray photoelectron spectroscopy. Low-energy electron diffraction and scanning tunneling microscopy studies show intact carbon lattice of graphene after the GeOx intercalation. Raman characterizations reveal that the intercalated layer effectively decouples graphene from the Ir substrate. The transport measurements demonstrate that the GeOx layer can act as a tunneling barrier in the fabricated large-area high-quality vertical graphene/GeOx/Ir heterostructure.
Keywords:  graphene      intercalation      heterostructure      tunneling barrier  
Received:  24 December 2020      Revised:  19 January 2021      Accepted manuscript online:  02 February 2021
PACS:  81.05.ue (Graphene)  
  71.20.Tx (Fullerenes and related materials; intercalation compounds)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  73.43.Jn (Tunneling)  
Fund: Project supported by the National Key Research & Development Program of China (Grant Nos. 2019YFA0308500, 2016YFA0202300, and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61888102, 61925111, and 21661132006), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), and the CAS Key Laboratory of Vacuum Physics.
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: luhl@ucas.ac.cn   

Cite this article: 

Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate 2021 Chin. Phys. B 30 048102

1 Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
2 Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2013 Nat. Nanotechnol. 8 100
3 Liu Y, Sheng J, Wu H, He Q, Cheng H C, Shakir M I, Huang Y and Duan X 2016 Adv. Mater. 28 4120
4 Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J and Kim K 2012 Science 336 1140
5 An X, Liu F, Jung Y J and Kar S 2013 Nano Lett. 13 909
6 Zeng L H, Wang M Z, Hu H, Nie B, Yu Y Q, Wu C Y, Wang L, Hu J G, Xie C, Liang F X and Luo L B 2013 ACS Appl. Mater. Interfaces 5 9362
7 Yang F, Cong H, Yu K, Zhou L, Wang N, Liu Z, Li C, Wang Q and Cheng B 2017 ACS Appl. Mater. Interfaces 9 13422
8 Chung K, Lee C H and Yi G C 2010 Science 330 655
9 Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X and Gao H J 2014 Appl. Phys. Lett. 104 093110
10 Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X and Gao H J 2014 Chin. Phys. B 23 098101
11 Gao M, Pan Y, Huang L, Hu H, Zhang L Z, Guo H M, Du S X and Gao H J 2011 Appl. Phys. Lett. 98 033101
12 Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
13 N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 043033
14 Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
15 Odahara G, Otani S, Oshima C, Suzuki M, Yasue T and Koshikawa T 2011 Surf. Sci. 605 1095
16 Gierz I, Suzuki T, Weitz R T, Lee D S, Krauss B, Riedl C, Starke U, Höchst H, Smet J H, Ast C R and Kern K 2010 Phys. Rev. B 81 235408
17 Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Castro Neto A H and Gao H J 2012 Appl. Phys. Lett. 100 093101
18 Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L and Gao H J 2012 Appl. Phys. Lett. 100 083101
19 Li L F, Wang Y L, Meng L, Wu R T and Gao H J 2013 Appl. Phys. Lett. 102 093106
20 Petrovic M, Srut Rakic I, Runte S, Busse C, Sadowski J T, Lazic P, Pletikosic I, Pan Z H, Milun M, Pervan P, Atodiresei N, Brako R, Sokcevic D, Valla T, Michely T and Kralj M 2013 Nat. Commun. 4 2772
21 Sutter P, Sadowski J T and Sutter E A 2010 J. Am. Chem. Soc. 132 8175
22 Lizzit S, Larciprete R, Lacovig P, Dalmiglio M, Orlando F, Baraldi A, Gammelgaard L, Barreto L, Bianchi M, Perkins E and Hofmann P 2012 Nano Lett. 12 4503
23 Dahal A and Batzill M 2015 Sci. Rep. 5 11378
24 Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166
25 Schulzendorf M, Hinaut A, Kisiel M, Johr R, Pawlak R, Restuccia P, Meyer E, Righi M C and Glatzel T 2019 ACS Nano 13 5485
26 Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650
27 Larciprete R, Lacovig P, Orlando F, Dalmiglio M, Omiciuolo L, Baraldi A and Lizzit S 2015 Nanoscale 7 12650
28 Guo H, Wang X Y, Huang L, Jin X, Yang Z Z, Zhou Z, Hu H, Zhang Y Y, Lu H L, Zhang Q H, Shen C M, Lin X, Gu L, Dai Q, Bao L H, Du S X, Hofer W, Pantelides S T and Gao H J 2020 Nano Lett. 20 8584
29 Feng Y, Trainer D J and Chen K 2017 J. Phys. D: Appl. Phys. 50 155101
30 Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
31 Guo H, Wang X Y, Bao D L, Lu H L, Zhang Y Y, Li G, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 078103
32 Chae S, Lee J, Mengle K A, Heron J T and Kioupakis E 2019 Appl. Phys. Lett. 114 102104
33 Goldoni A and Modesti S 1996 Phys. Rev. B 54 11340
34 Mullet C H, Stenger B H, Durand A M, Morad J A, Sato Y, Poppenheimer E C and Chiang S 2017 Surf. Sci. 666 96
35 Jin S X, Li N, Cui H and Wang C X 2013 Nano Energy 2 1128
36 Oh J and Campbell J C 2004 J. Electron. Mater. 33 364
37 Swaminathan S and McIntyre P C 2010 ECS Trans. 33 455
38 Swineharf D F 1962 J. Chem. Educ. 39 333
39 Murakami H, Fujioka T, Ohta A, Bando T, Higashi S and Miyazaki S 2010 ECS Trans. 33 253
40 Starodub E, Bostwick A, Moreschini L, Nie S, Gabaly F E, McCarty K F and Rotenberg E 2011 Phys. Rev. B 83 125428
41 Casiraghi C, Pisana S, Novoselov K S, Geim A K and Ferrari A C 2007 Appl. Phys. Lett. 91 233108
42 Röhrl J, Hundhausen M, Emtsev K V, Seyller T, Graupner R and Ley L 2008 Appl. Phys. Lett. 92 201918
43 Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406
44 Zabel J, Nair R R, Ott A, Georgiou T, Geim A K, Novoselov K S and Casiraghi C 2012 Nano Lett. 12 617
45 Simmons J G 1963 J. Appl. Phys. 34 1793
46 Dorneles L S, Schaefer D M, Carara M and Schelp L F 2003 Appl. Phys. Lett. 82 2832
47 Chen W, Liang R, Zhang S, Liu Y, Cheng W, Sun C and Xu J 2019 Nano Research 13 127
[1] Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures
Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2021, 30(9): 097601.
[2] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[3] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[4] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[5] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[6] Direct growth of graphene films without catalyst on flexible glass substrates by PECVD
Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔). Chin. Phys. B, 2021, 30(9): 098101.
[7] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[8] Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures
Jianbao Zhu(朱健保), Wei Qin(秦维), and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(8): 087307.
[9] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[10] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[11] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[12] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[13] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[14] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[15] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[1] ZHAO MING-XIN, WANG SHENG-LIE, SUN XIAN-PING, LI LI-YUN, ZENG XI-ZHI. MEASUREMENTS OF 129Xe NUCLEAR MAGNETIC RESONANCE IN GASEOUS, LIQUID AND SOLID XENON[J]. Acta Phys. Sin. (Overseas Edition), 1994, 3(7): 501 -505 .
[2] TAO BI-XIU, TAO BI-YOU. DYNAMICS OF PLANAR RELATIVISTIC DOMAIN WALLS[J]. Acta Phys. Sin. (Overseas Edition), 1997, 6(5): 356 -360 .
[3] Gao Hong, Liu Sheng-gang. DISPERSION RELATION OF A MAGNETIZED PLASMA-FILLED BACKWARD WAVE OSCILLATOR[J]. Chin. Phys., 2000, 9(4): 274 -278 .
[4] Wang Cheng-Zhi, Fang Mao-Fa. Quantum entanglement in a two-dimensional ion trap[J]. Chin. Phys., 2003, 12(3): 287 -293 .
[5] Cao Quan-Jun, Zhang Yi-Men, Zhang Yu-Ming, Lü Hong-Liana, Wang Yue-Hu, Chang Yuan-Cheng, Tang Xiao-Yan. A CAD oriented quasi-analytical large-signal drain current model for 4H-SiC MESFETs[J]. Chin. Phys., 2007, 16(4): 1097 -1100 .
[6] W. B. Cardoso, A. T. Avelar, B.Baseia, N. G. de Almeida. Total teleportation of zero- and one-photon entangled states in running waves[J]. Chin. Phys. B, 2008, 17(1): 60 -63 .
[7] Gao Fei, Li Zhuo-Qiu, Tong Heng-Qing. Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization[J]. Chin. Phys. B, 2008, 17(4): 1196 -1201 .
[8] Cao Wen-Hui, Yu Hai-Feng, Tian Ye, Yu Hong-Wei, Ren Yu-Feng, Chen Geng-Hua, Zhao Shi-Ping. Nb/Al-AlOx/Nb junctions with controllable critical current density for qubit application[J]. Chin. Phys. B, 2009, 18(11): 5044 -5046 .
[9] Jin Zhang-Ying, Shen Bai-Fei, Zhang Xiao-Mei, Wang Feng-Chao, Ji Liang-Liang. Energetic-ion generation by the combination of laser pressure and Coulomb explosion[J]. Chin. Phys. B, 2009, 18(12): 5395 .
[10] Wang Fa-Qiang, Zhang Zhi-Ming, Liang Rui-Sheng. Decoherence of two-qubit system in a non-Markovian squeezed reservoir[J]. Chin. Phys. B, 2009, 18(2): 597 -603 .