Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084202    DOI: 10.1088/1674-1056/abe22b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber

Xiaomin Hua(花小敏)1, Gaige Zheng(郑改革)1,2,†, Fenglin Xian(咸冯林)1,‡, Dongdong Xu(徐董董)1, and Shengyao Wang(王升耀)1
1 Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2 Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract  Narrow band mid-infrared (MIR) absorption is highly desired in thermal emitter and sensing applications. We theoretically demonstrate that the perfect absorption at infrared frequencies can be achieved and controlled around the surface phonon resonance frequency of silicon carbide (SiC). The photonic heterostructure is composed of a distributed Bragg reflector (DBR)/germanium (Ge) cavity/SiC on top of a Ge substrate. Full-wave simulation results illustrate that the Tamm phonon-polaritons electric field can locally concentrate between the Ge cavity and the SiC film, contributed to the improved light-phonon interactions with an enhancement of light absorption. The structure has planar geometry and does not require nano-patterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles. Their absorption lines are tunable via engineering of the photon band-structure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber.
Keywords:  perfect absorption      surface phonon polaritons      mid-infrared      distributed Bragg reflector  
Received:  27 December 2020      Revised:  28 January 2021      Accepted manuscript online:  02 February 2021
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.70.Qs (Photonic bandgap materials)  
Fund: Project supported by the National Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20191396, BK20180784).
Corresponding Authors:  Gaige Zheng, Fenglin Xian     E-mail:  jsnanophotonics@yahoo.com;xfl@nuist.edu.cn

Cite this article: 

Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀) Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber 2021 Chin. Phys. B 30 084202

[1] Lu H, Li Y W, Yue Z J, Mao D and Zhao J L 2019 APL Photon. 4 040801
[2] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V and Shelykh I A 2007 Phys. Rev. B 76 165415
[3] Vinogradov A P, Dorofeenko A V, Erokhin S G, Inoue M, Lisyansky A A, Merzlikin A M and Granovsky A B 2006 Phys. Rev. B 74 045128
[4] Afinogenov B I, Bessonov V O, Nikulin A A and Fedyanin A A 2013 Appl. Phys. Lett. 103 061112
[5] Wang J Y, Zhu Y S, Wang W H, Li Y Z, Gao R, Yu P, Xu H X and Wang Z M 2020 Nanoscale 12 23945
[6] Lee K J, Wu J W and Kim K H 2013 Opt. Express 21 28817
[7] Das R, Srivastava T and Jhac R 2015 Sens. Actuators B 206 443
[8] Zhang W L, Wang F, Rao Y J and Jiang Y 2014 Opt. Express 22 14524
[9] Juneau-Fecteau A, Savin R, Boucherif A and Fréchette L G 2019 Appl. Phys. Lett. 114 141101
[10] Bao S and Zheng G G 2020 Opt. Mater. 109 110307
[11] Pühringer G and Jakoby B 2018 J. Opt. Soc. Am. B 35 1490
[12] Yang Z Y, Ishii S, Yokoyama T, Dao T T, Sun M G, Pankin P S, Timofeev I V, Nagao T and Chen K P 2017 ACS Photon. 4 2212
[13] Silva J M S S and Vasilevskiy M I 2019 Opt. Mater. Express 9 244
[14] Kiessling R, Tong Y J, Giles A J, Gewinner S, Schöllkopf W, Caldwell J D, Wolf M and Paarmann A 2019 ACS Photon. 6 3017
[15] Li Y H, Qi R S, Shi R C, Li N and Gao P 2020 Sci. Bull. 65 820
[16] Foteinopoulou S, Devarapu G C R, Subramania G S, Krishna D and Wasserman D 2019 Nanophotonics 8 2129
[17] Palik and Edward D 1985 Handbook of Optical Constants of Solids (New York: Academic Press)
[18] Zhu H, Luo H, Li Q, Zhao D, Cai L, Du K, Xu Z, Ghosh P and Qiu M 2018 Opt. Lett. 43 5230
[19] Zhang C, Wu K, Giannini V and Li X F 2017 ACS Nano 11 1719
[20] Yu T, Zhang C, Liu H M, Liu J H, Li K, Qin L L, Wu S L and Li X F 2019 Nanoscale 11 23182
[21] Li Q, Yu B Q, Li Z F, Wang X F, Zhang Z C and Pan L F 2017 Chin. Phys. B 26 085202
[22] Lu H, Li Y W, Jiao H, Li Z W, Mao D and Zhao J L 2019 Opt. Express 27 5383
[23] Hu J G, Yao E X, Xie W Q, Liu W, Li D M, Lu Y H and Zhan Q W 2019 Opt. Express 27 18642
[24] Wang Z Y, Clark J K, Ho Y L, Vilquin B, Daiguji H and Delaunay J J 2018 ACS Photon. 5 2446
[25] Chen C and Wang J 2017 Chin. Phys. B 26 044101
[26] Chen X, Wu J H, Liu C R and Cao P 2019 J. Opt. Soc. Am. B 36 153
[27] Li J S and Chen X S 2020 Chin. Phys. B 29 078703
[28] Qin F, Chen X F, Yi Z, Yao W T, Yang H, Tang Y J, Yi Y, Li H L and Yie Y G 2020 Solar Energy Mater. Solar Cells 211 110535
[29] Feng Y, Hu Z D, Balmakou A, Khakhomov S, Semchenko L and Wang J C 2020 Plasmonics 15 1869
[30] Wang J C, Yang L, Wang M, Hu Z D, Deng Q, Nie Y G, Zhang F and Sang T 2019 J. Phys. D: Appl. Phys. 52 015101
[1] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[2] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[3] Solar energy full-spectrum perfect absorption and efficient photo-thermal generation
Zhefu Liao(廖喆夫), Zhengqi Liu(刘正奇), Qizhao Wu(吴起兆), Xiaoshan Liu(刘晓山), Xuefeng Zhan(詹学峰), Gaorong Zeng(曾高荣), and Guiqiang Liu(刘桂强). Chin. Phys. B, 2021, 30(8): 084206.
[4] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[5] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[6] High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars
Sheng-Wen Xie(谢圣文), Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Yi Zhang(张一), Jin-Ming Shang(尚金铭), Fu-Hui Shao(邵福会), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(1): 014208.
[7] Transverse localization of Tamm plasmon in metal-DBR structure with disordered layer
Deng-Ju He(何登举), Wei-Li Zhang(张伟利), Rui Ma(马瑞), Shan-Shan Wang(王珊珊), Xiao-Min Wu(吴小敏), Yun-Jiang Rao(饶云江). Chin. Phys. B, 2018, 27(8): 087301.
[8] Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses
Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇). Chin. Phys. B, 2018, 27(7): 077105.
[9] Magneto optics and time resolved terahertz spectrocopy
T Dong(董涛), Z G Chen(谌志国), N L Wang(王楠林). Chin. Phys. B, 2018, 27(7): 077501.
[10] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[11] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
[12] Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm
Yi Zhang(张一), Fu-Hui Shao(邵福会), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Jin-Ming Shang(尚金铭), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 124207.
[13] An improved design for AlGaN solar-blind avalanche photodiodes with enhanced avalanche ionization
Yin Tang(汤寅), Qing Cai(蔡青), Lian-Hong Yang(杨莲红), Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2017, 26(3): 038503.
[14] Self-compression of 1.8-μm pulses in gas-filled hollow-core fibers
Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu Zhao(赵钰), Yu-Xin Leng(冷雨欣), Ru-Xin Li(李儒新). Chin. Phys. B, 2017, 26(10): 104206.
[15] Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber
Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰). Chin. Phys. B, 2016, 25(7): 074206.
[1] Zhan Yong, Zhao Tong-Jun, Yu Hui, Song Yan-Li. Transport properties under the influence of finite friction[J]. Chin. Phys., 2002, 11(6): 624 -628 .
[2] Li Shao-Hui, Li Ru-Xin, Ni Guo-Quan, Xu Zhi-Zhan. Electron impact ionization of large krypton clusters[J]. Chin. Phys., 2004, 13(10): 1684 -1688 .
[3] Feng Chun-Hua, Wang Wen-Hao, He Ye-Xi, Gao Zhe, Zeng Li, Zhang Guo-Ping, Xie Li-Feng. Observation of intermittency in edge plasma of SUNIST tokamak[J]. Chin. Phys., 2004, 13(12): 2091 -2096 .
[4] Rong Chuan-Bing, Zhang Jian, Du Xiao-Bo, Zhang Hong-Wei, Zhang Shao-Ying, Shen Bao-Gen. Magnetic properties and coercivity mechanism of precipitation-hardened Gd-Co based ribbons[J]. Chin. Phys., 2004, 13(7): 1144 -1148 .
[5] Ning Xin-Bao, Wu Wei, Ma Xiao-Fei, Li Jin. Detecting dynamical complexity changes in time series using the base-scale entropy[J]. Chin. Phys., 2005, 14(12): 2428 -2432 .
[6] Wang Zhu-Yuan, Cui Yi-Ping. Behaviour of a wideband double-pass discrete Raman amplifier with simultaneous reflection of signals and multi-pump[J]. Chin. Phys., 2005, 14(2): 372 -377 .
[7] Ke Jian-Hong, Zhuang You-Yi, Lin Zhen-Quan. Aggregate growth driven by monomer transfer[J]. Chin. Phys., 2005, 14(8): 1676 -1682 .
[8] Lu Zhi-Gang, Gong Yu-Bin, Wei Yan-Yu, Wang Wen-Xiang. Study of the double rectangular waveguide grating slow-wave structure[J]. Chin. Phys., 2006, 15(11): 2661 -2668 .
[9] Li Mi-Shan, Tian Qiang. Discrete gap breathers in a diatomic K2--K3--K4 chain with cubic nonlinearity[J]. Chin. Phys., 2007, 16(1): 228 -235 .
[10] Wang Xiang-Hui, Lin Lie, Zhang Yang. Analysis of second-harmonic generation microscopy under refractive index mismatch[J]. Chin. Phys., 2007, 16(11): 3285 -3289 .