Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 066701    DOI: 10.1088/1674-1056/abddaa

Floquet bands and photon-induced topological edge states of graphene nanoribbons

Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航)
College of Physics, Chongqing University, Chongqing, China
Abstract  Floquet theorem is widely used in the light-driven systems. But many 2D-materials models under the radiation are investigated with the high-frequency approximation, which may not be suitable for the practical experiment. In this work, we employ the non-perturbative Floquet method to strictly investigate the photo-induced topological phase transitions and edge states properties of graphene nanoribbons under the light irradiation of different frequencies (including both low and high frequencies). By analyzing the Floquet energy bands of ribbon and bulk graphene, we find the cause of the phase transitions and its relation with edge states. Besides, we also find the size effect of the graphene nanoribbon on the band gap and edge states in the presence of the light.
Keywords:  Floquet bands      graphene      topological phase transition      edge states  
Received:  14 December 2020      Revised:  14 January 2021      Accepted manuscript online:  20 January 2021
PACS:  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  73.22.Pr (Electronic structure of graphene)  
  73.20.At (Surface states, band structure, electron density of states)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the starting foundation of Chongqing University (Grant No. 0233001104429), the National Natural Science Foundation of China (Grant No. 11847301), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2020CQJQY-Z003).
Corresponding Authors:  Xiaolong Lu     E-mail:

Cite this article: 

Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航) Floquet bands and photon-induced topological edge states of graphene nanoribbons 2021 Chin. Phys. B 30 066701

[1] Shirley J H 1965 Phys. Rev. 138 B979
[2] Oka T and Aoki H 2009 Phys. Rev. B 79 169901
[3] McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G and Cavalleri A 2020 Nat. Phys. 16 38
[4] Dahlhaus J P, Fregoso B M and Moore J E 2015 Phys. Rev. Lett. 114 246802
[5] Drexler C, Tarasenko S A, Olbrich P, Karch J, Hirmer M, Muller F, Gmitra M, Fabian J, Yakimova R, Lara-Avila S, Kubatkin S, Wang M, Vajtai R, Ajayan P M, Kono J and Ganichev S D 2013 Nat. Nanotechnol. 8 104
[6] Zou J Y and Liu B G 2017 Phys. Rev. B 95 205125
[7] Lü X L and Xie H 2019 J. Phys.: Condens. Matter 31 495401
[8] Atteia J, Bardarson J H and Cayssol J 2017 Phys. Rev. B 96 245404
[9] Usaj G, Perez-Piskunow P M, Torres L E F F and Balseiro C A 2014 Phys. Rev. B 90 115423
[10] Rudner M S, Lindner N H, Berg E and Levin M 2013 Phys. Rev. X 3 031005
[11] Zhou L W and Gong J B 2018 Phys. Rev. B 97 245430
[12] Xiong T S, Gong J B and An J H 2016 Phys. Rev. B 93 184306
[13] Eckardt A and Anisimovas E 2015 New J. Phys. 17 093039
[14] Mikami T, Kitamura S, Yasuda K, Tsuji N, Oka T and Aoki H 2016 Phys. Rev. B 93 144307
[15] Wang Y H, Steinberg H, Jarillo-Herrero P and Gedik N 2013 Science 342 453
[16] Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A and Gedik N 2016 Nat. Phys. 12 306
[17] Zhai X C and Jin G J 2014 Phys. Rev. B 89 235416
[18] Ghalamkari K, Tatsumi Y and Saito R 2018 J. Phys. Soc. Jpn. 87 063708
[19] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[20] Kibis O V, Dini K, Iorsh I V and Shelykh I A 2017 Phys. Rev. B 95 125401
[21] Chen L 2019 Chin. Phys. B 28 117304
[22] Vogl M, Rodriguez-Vega M and Fiete G A 2020 Phys. Rev. B 101 024303
[23] Kang Y, Park S Y and Moon K 2020 Phys. Rev. B 101 035137
[24] Torres L E F F, Perez-Piskunow P M, Balseiro C A and Usaj G 2014 Phys. Rev. Lett. 113 266801
[25] Perez-Piskunow P M, Torres L E F F and Usaj G 2015 Phys. Rev. A 91 043625
[26] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
[27] Wang Y X and Li F X 2016 Physica B 492 1
[28] Umer M, Bomantara R W and Gong J B 2020 Phys. Rev. B 101 235438
[1] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[2] Direct growth of graphene films without catalyst on flexible glass substrates by PECVD
Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔). Chin. Phys. B, 2021, 30(9): 098101.
[3] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[4] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[5] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[6] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[7] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[8] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[9] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[10] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[11] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[12] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[13] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[14] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[15] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
No Suggested Reading articles found!