Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060508    DOI: 10.1088/1674-1056/abda35
GENERAL Prev   Next  

Fractal sorting vector-based least significant bit chaotic permutation for image encryption

Yong-Jin Xian(咸永锦)1, Xing-Yuan Wang(王兴元)1,†, Ying-Qian Zhang(张盈谦)2, Xiao-Yu Wang(王晓雨)1, and Xiao-Hui Du(杜晓慧)1
1 School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China;
2 School of Information Science and Technology, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China
Abstract  The image's least significant bit (LSB) covers lots of the details that have been commonly used in image encryption analysis. The newly proposed fractal sorting vector (FSV) and FSV-based LSB chaotic permutation (FSV-LSBCP) is a novel chaotic image encryption cryptosystem introduced in this article. The FSV-LSBCP effectively strengthens the security of the cryptographic scheme concerning the properties of the FSV. Key analysis, statistical analysis, resistance differential attack analysis, and resistance to cropping attacks and noise attacks are the focus of the suggested image encryption cryptosystem. The security experiment shows that the cryptosystem is adequate to achieve the desired degree of security.
Keywords:  chaotic image encryption      fractal sorting vector      bit-level permutation      FSV-based LSB chaotic permutation  
Received:  02 December 2020      Revised:  10 January 2021      Accepted manuscript online:  11 January 2021
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Df (Fractals)  
  07.05.Pj (Image processing)  
  05.45.Df (Fractals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61672124), the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund, China (Grant No. MMJJ20170203), the Liaoning Provincial Science and Technology Innovation Leading Talents Program Project, China (Grant No. XLYC1802013), the Key Research and Development Projects of Liaoning Province, China (Grant No. 2019020105-JH2/103), and the Jinan City 20-University Funding Projects for Introducing Innovation Team Program, China (Grant No. 2019GXRC031).
Corresponding Authors:  Xing-Yuan Wang     E-mail:  xywang@dlmu.edu.cn

Cite this article: 

Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧) Fractal sorting vector-based least significant bit chaotic permutation for image encryption 2021 Chin. Phys. B 30 060508

[1] Wang C P, Wang X Y, Xia Z Q, Ma B and Shi Y Q 2020 IEEE T. Circ. Syst. Vid. 30 4440
[2] Xian Y J and Wang X Y 2021 Inform. Sci. 547 1154
[3] Li Q, Wang X Y, Wang X Y, Ma B, Wang C P and Shi Y Q 2021 Inform. Sci. 553 19
[4] Popoff S, Lerosey G, Fink M, Boccara A C and Gigan S 2010 Nat. Commun. 1 81
[5] Li C Q, Lin D D, Lu J H and Hao F 2018 IEEE Multimedia 25 46
[6] Chen W, Chen X D and Sheppard C J R 2010 Opt. Lett. 35 3817
[7] Chen J J, Yan D W, Duan S K and Wang L D 2020 Chin. Phys. B 29 110504
[8] Wang X Y, Wang Y, Wang S W, Zhang Y Q and Wu X J 2018 Chin. Phys. B 27 110502
[9] Hayat U and Azam N A 2019 Signal Process. 155 391
[10] Wang X Y and Gao S 2020 Inform. Sci. 507 16
[11] Nosrati K, Volos C and Azemi A 2017 Signal Process.-Image 58 35
[12] Alawida M, Samsudin A, Teh J S and Alkhawaldeh R S 2019 Signal Process. 160 45
[13] Zhang H, Wang X Q, Sun Y J and Wang X Y 2020 Signal Process.-Image 84 115829
[14] Zhang Y 2018 Inform. Sci. 450 361
[15] Liu Z Y, Xia T C and Wang J B 2018 Chin. Phys. B 27 030502
[16] Wang Y P, Liu S T and Li H 2020 Nonlinear Dyn. 102 579
[17] Sun F, Liu S T, Li Z Q and Lu Z W 2008 Chaos Soliton. Fract. 38 631
[18] Fridrich J 1998 Int. J. Bifur. Chaos 8 1259
[19] Zhang Y Q and Wang X Y 2014 Inform. Sci. 273 329
[20] Li C Q, Lin D D and Lu J H 2017 IEEE Multimedia 24 64
[21] Wu J H, Liao X F and Yang B 2018 Signal Process. 142 292
[22] Shahna K and Mohamed A 2020 Appl. Soft Comput. 90 106162
[23] Zhu Z L, Zhang W, Wong K W and Yu H 2011 Inform. Sci. 181 1171
[24] Zhang W, Wong K W, Yu H and Zhu Z L 2013 Commun. Nonlinear Sci. 18 584
[25] Tang Z J, Song J, Zhang X Q and Sun R H 2016 Opt. Laser Eng. 80 1
[26] Diaconu A V 2016 Inform. Sci. 355 314
[27] Cao C, Sun K H and Liu W H 2018 Signal Process. 143 122
[28] Liu X, Song Y R and Jiang G P 2019 Int. J. Bifur. Chaos 29 2
[29] Zhang Y Q and Wang X Y 2014 Nonlinear Dyn. 77 687
[30] Zhang L and Zhang X Q 2020 Multimed. Tools Appl. 79 20753
[31] Sun W H and Liu S T 2020 Discrete Dyn. Nat. Soc. 2020 8547685
[32] Liu S T and Wang P 2018 Fractal Control Theory (Singapore: Springer) p. 3
[33] Liu S T, Zhang Y P and Liu C A 2020 Fractal Control and Its Applications (Singapore: Springer) p. 235
[34] Bi F and Li C F 2013 Chin. Phys. Lett. 30 010306
[35] Hao W Q, Liang Z C, Liu X Y, Zhao R, Kong M M, Guan J F and Zhang Y 2019 Acta Phys. Sin. 68 199501 (in Chinese)
[36] Xing H Y, Gong P and Xu W 2012 Acta Phys. Sin. 61 160504 (in Chinese)
[37] Yu Y M, Yang L C, Zhou Q, Zhao L L and Liu Z P 2016 Chin. Phys. B 25 060503
[38] Hua Z Y and Zhou Y C 2016 Inform. Sci. 339 237
[39] Alvarez G and Li S J 2006 Int. J. Bifurc. Chaos 16 2129
[40] Alawida M, Teh J S, Samsudin A and Alshoura W H 2019 Signal Process. 164 24
[41] Wang X Y, Zhang Y Q and Bao W M 2015 Opt. Laser Eng. 73 53
[42] Li J F, Xiang S Y, Wang H N, Gong J K and Wen A J 2018 Opt. Laser Eng. 102 170
[1] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[2] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[3] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[4] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[5] A memristive map with coexisting chaos and hyperchaos
Sixiao Kong(孔思晓), Chunbiao Li(李春彪), Shaobo He(贺少波), Serdar Çiçek, and Qiang Lai(赖强). Chin. Phys. B, 2021, 30(11): 110502.
[6] Physical generation of random numbers using an asymmetrical Boolean network
Hai-Fang Liu(刘海芳), Yun-Cai Wang(王云才), Lu-Xiao Sang(桑鲁骁), and Jian-Guo Zhang(张建国). Chin. Phys. B, 2021, 30(11): 110503.
[7] A secure image protection algorithm by steganography and encryption using the 2D-TSCC
Qi Li(李琦), Xingyuan Wang(王兴元), He Wang(王赫), Xiaolin Ye(叶晓林), Shuang Zhou(周双), Suo Gao(高锁), and Yunqing Shi(施云庆). Chin. Phys. B, 2021, 30(11): 110501.
[8] Dynamics analysis of a 5-dimensional hyperchaotic system with conservative flows under perturbation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), and Qi Xie(谢奇). Chin. Phys. B, 2021, 30(10): 100502.
[9] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[10] Cooperative behaviors of coupled nonidentical oscillators with the same equilibrium points
Wen Sun(孙文), Biwen Li(李必文), Wanli Guo(郭万里), Zhigang Zheng(郑志刚), and Shihua Chen(陈士华). Chin. Phys. B, 2021, 30(10): 100504.
[11] Application of the edge of chaos in combinatorial optimization
Yanqing Tang(唐彦卿), Nayue Zhang(张娜月), Ping Zhu(朱萍), Minghu Fang(方明虎), and Guoguang He(何国光). Chin. Phys. B, 2021, 30(10): 100505.
[12] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[13] An image encryption algorithm based on improved baker transformation and chaotic S-box
Xing-Yuan Wang(王兴元), Huai-Huai Sun(孙怀怀), and Hao Gao(高浩). Chin. Phys. B, 2021, 30(6): 060507.
[14] Generating multi-layer nested chaotic attractor and its FPGA implementation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), Mengjiao Wang(王梦蛟), and Zhijun Li(李志军). Chin. Phys. B, 2021, 30(6): 060509.
[15] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
No Suggested Reading articles found!