Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050301    DOI: 10.1088/1674-1056/abda30
GENERAL Prev   Next  

Application of non-Hermitian Hamiltonian model in open quantum optical systems

Hong Wang(王虹)1, Yue Qin(秦悦)1, Jingxu Ma(马晶旭)1, Heng Shen(申恒)1,3, Ying Hu(胡颖)2,3, and Xiaojun Jia(贾晓军)1,3,†
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Non-Hermitian systems have observed numerous novel phenomena and might lead to various applications. Unlike standard quantum physics, the conservation of energy guaranteed by the closed system is broken in the non-Hermitian system, and the energy can be exchanged between the system and the environment. Here we present a scheme for simulating the dissipative phase transition with an open quantum optical system. The competition between the coherent interaction and dissipation leads to the second-order phase transition. Furthermore, the quantum correlation in terms of squeezing is studied around the critical point. Our work may provide a new route to explore the non-Hermitian quantum physics with feasible techniques in experiments.
Keywords:  non-Hermitian Hamiltonian      open quantum system      optical parametric processing  
Received:  26 November 2020      Revised:  05 January 2021      Accepted manuscript online:  11 January 2021
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
  11.30.Qc (Spontaneous and radiative symmetry breaking)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61925503, 11874038, and 11654002), the Key Project of the National Key R&D Program of China (Grant Nos. 2016YFA0301402 and 2020YFA0309400), the Program for the Innovative Talents of Higher Education Institutions of Shanxi, the Program for Sanjin Scholars of Shanxi Province, and the Fund for Shanxi "1331 Project" Key Subjects Construction.
Corresponding Authors:  Xiaojun Jia     E-mail:  jiaxj@sxu.edu.cn

Cite this article: 

Hong Wang(王虹), Yue Qin(秦悦), Jingxu Ma(马晶旭), Heng Shen(申恒), Ying Hu(胡颖), and Xiaojun Jia(贾晓军) Application of non-Hermitian Hamiltonian model in open quantum optical systems 2021 Chin. Phys. B 30 050301

[1] Chen Z J and Ning X J 2003 Acta. Phys. Sin. 52 2683 (in Chinese)
[2] Tarasov V E 2001 Phys. Lett. A 288 173
[3] Sternheim M M and Walker J F 1972 Phys. Rev. C 6 114
[4] Nanayakkara A 2002 Phys. Lett. A 304 67
[5] Andrianov A A and Sokolov A V 2011 Symmetry. Integr. Geom. 7 111
[6] Zyablovsky A A, Andrianov E S and Pukhov A A 2016 Sci. Rep-UK 6 29709
[7] Jörg D, Mailybaev A A, Julian B, Ulrich K, Adrian G, Florian L, Milburn T J, Peter R, Nimrod M and Stefan R 2016 Nature 537 76
[8] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[9] Xu X and Fang M F 2020 Chin. Phys. B 29 57305
[10] Zhang S X, Liu T H, Cao S, Liu Y T, Geng S B and Lian Y G 2020 Chin. Phys. B 29 50402
[11] Liu Y, Liang S L, Jin G R, Yu Y B, Lan J Y, He X B and Guo K X 2020 Chin. Phys. B 29 50301
[12] Ou Z Y, Pereira S F and Kimble H J 1992 Appl. Phys. B55 256
[13] Zurek W H 2000 Vistas. Astron. 37 185
[14] Zhu W T, Ren Q B, Duan L W and Chen Q H 2016 Chin. Phys. Lett. 33 50302
[15] Guo M L, Li B, Wang A X and Fei S M 2020 Chin. Phys. B 29 70304
[16] Liu J, Miao B, Jia X Y and Fan D H 2019 Acta. Phys. Sin. 68 230302 (in Chinese)
[17] Bender C M and Mannheim P D 2010 Phys. Lett. A 374 1616
[18] Zhu C J, Ping L L, Yang Y P and Agarwal G S 2020 Phys. Rev. Lett. 124 073602
[19] Xing Y, Qi L, Cao J, Wang D Y, Bai C H, Wang H F, Zhu A D and Zhang S 2017 Phys. Rev. A 96 043810
[20] Mostafazadeh A 2002 J. Math. Phys. 43 205
[21] Grabert H 1977 Z. Phys. B 26 79
[22] Boyanovsky D and Jasnow D 2017 Phys. Rev. A 96 062108
[23] Vega I D and Alonso D 2017 Rev. Mod. Phys. 89 015001
[24] Ren Z H, Li Y, Li Y N and Li W D 2019 Acta Phys. Sin. 68 040601 (in Chinese)
[25] Du S J, Peng Y G, Feng H R, Han F, Yang L W and Zheng Y G 2020 Chin. Phys. B 29 74202
[26] Jia X J, Zhang J, Wang Y, Zhao Y P, Xie C D and Peng K C 2012 Phys. Rev. Lett. 108 190501
[27] Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D and Peng K C 2018 Phys. Rev. Lett. 121 150502
[28] Fernández F M 2016 Int. J. Theor. Phys. 55 843
[29] Zhang M Z, Sweeney W, Hsu C W, Yang L, Stone A D and Jiang L 2019 Phys. Rev. Lett. 123 180501
[30] Huzihiro A 1968 Publ. Res. I. Math. Sci. 4 387
[31] Gardiner C W and Zoller P 2000 Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Berlin: Springer-Verlag) pp. 119–323
[32] Lee T E, Reiter F and Moiseyev N 2014 Phys. Rev. Lett. 113 250401
[33] Zhai S Q, Zhang J X and Gao J R 2009 Shanxi University 16
[34] Zhou Y Y, Jia X J Li F Xie C D and Peng K C 2015 Opt. Express 23 4952
[1] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[2] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[3] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[4] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[5] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[6] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[7] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[8] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[9] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[10] Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment
Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2019, 28(3): 030301.
[11] Controlling of entropic uncertainty in open quantum system via proper placement of quantum register
Ying-Hua Ji(嵇英华), Qiang Ke(柯强), Ju-Ju Hu(胡菊菊). Chin. Phys. B, 2018, 27(10): 100302.
[12] Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum
Zhong Hong-Hua (钟宏华), Xie Qiong-Tao (谢琼涛), Xu Jun (徐军), Hai Wen-Hua (海文华), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(2): 020314.
[13] Comparison between non-Markovian dynamics with and without rotating wave approximation
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2013, 22(3): 030304.
[14] Distribution of non-Markovian intervals for open qubit systems
Zheng Yan-Ping(郑艳萍), Tang Ning(唐宁), Wang Guo-You(王国友), and Zeng Hao-Sheng(曾浩生) . Chin. Phys. B, 2011, 20(11): 110301.
No Suggested Reading articles found!