Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 038502    DOI: 10.1088/1674-1056/abda2e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Graphene/SrTiO3 interface-based UV photodetectors with high responsivity

Heng Yue(岳恒)1,†, Anqi Hu(胡安琪)1,†, Qiaoli Liu(刘巧莉)1, Huijun Tian(田慧军)1, Chengri Hu(胡成日)1, Xiansong Ren(任显松)1, Nianyu Chen(陈年域)1, Chen Ge(葛琛)2, Kuijuan Jin(金奎娟)2,\ccclink, and Xia Guo(郭霞)1,
1 State Key Laboratory for Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Strontium titanate (SrTiO3), which is a crucial perovskite oxide with a direct energy band gap of 3.2 eV, holds great promise for ultraviolet (UV) photodetection. However, the response performance of the conventional SrTiO3-based photodetectors is limited by the large relative dielectric constant of the material, which reduces the internal electric field for electron-hole pair separation to form a current collected by electrodes. Recently, graphene/semiconductor hybrid photodetectors by van-der-Waals heteroepitaxy method demonstrate ultrahigh sensitivity, which is benefit from the interface junction architecture and then prolonged lifetime of photoexcited carriers. Here, a graphene/SrTiO3 interface-based photodetector is demonstrated with an ultrahigh responsivity of 1.2× 106 A/W at the wavelength of 325 nm and ∼ 2.4× 104 A/W at 261 nm. The corresponding response time is in the order of ms. Compared with graphene/GaN interface junction-based hybrid photodetectors, ∼ 2 orders of magnitude improvement of the ultrahigh responsivity originates from a gain mechanism which correlates with the large work function difference induced long photo-carrier lifetime as well as the low background carrier density. The performance of high responsivity and fast response speed facilitates SrTiO3 material for further efforts seeking practical applications.
Keywords:  interface      SrTiO3      ultraviolet photodetector      high responsivity  
Received:  15 November 2020      Revised:  25 December 2020      Accepted manuscript online:  11 January 2021
PACS:  85.30.Hi (Surface barrier, boundary, and point contact devices)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFF0104801 and 2018YFB0406601) and the National Natural Science Foundation of China (Grant Nos. 61804012 and 11721404).
Corresponding Authors:  These authors contributed equally. Corresponding author. E-mail: guox@bupt.edu.cn $^\S$Corresponding author. E-mail: kjjin@iphy.ac.cn   

Cite this article: 

Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞) Graphene/SrTiO3 interface-based UV photodetectors with high responsivity 2021 Chin. Phys. B 30 038502

1 Xia F N, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
2 Lin F, Chen S W, Meng J, Tse G, Fu X W, Xu F J, Shen B, Liao Z M and Yu D P 2014 Appl. Phys. Lett. 105 073103
3 Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725
4 Huang M Q, Wang M L, Chen C, Ma Z W, Li X F, Han J B and Wu Y Q 2016 Adv. Mater. 28 3481
5 Chen Z F, Li X M, Wang J Q, Tao L, Long M Z, Liang S J, Ang L K, Shu C, Tsang H K and Xu J B 2017 ACS Nano 11 430
6 Liu F Z and Kar S 2014 ACS Nano 8 10270
7 Chen Z F, Cheng Z Z, Wang J Q, Wan X, Shu C, Tsang H K, Ho H P and Xu J B 2015 Adv. Opt. Mater. 3 1207
8 Lu Y H, Wu Z Q, Xu W L and Lin S S 2016 Nanotechnology 27 48LT03
9 Zhang H, Babichev A V, Jacopin G, Lavenus P, Julien F H, Egorov A Y, Zhang J, Pauport\'e T and Tchernycheva M 2013 J. Appl. Phys. 114 234505
10 Boruah B D, Ferry D B, Mukherjee A and Misra A 2015 Nanotechnology 26 235703
11 Nie B, Hu J G, Luo L B, Xie C, Zeng L H, Lv P, Li F Z, Jie J S, Feng M, Wu C Y, Yu Y Q and Yu S H 2013 Small 9 2872
12 Tian H J, Liu Q L, Zhou C X, Zhan X J, He X Y, Hu A Q and Guo X 2018 Appl. Phys. Lett. 113 121109
13 Tian H J, Hu A Q, Liu Q L, He X Y and Guo X 2020 Adv. Opt. Mater. 8 1901741
14 Liu Q L, Tian H J, Li J, Hu A Q, He X Y, Sui M L and Guo X 2019 Adv. Opt. Mater. 7 1900455
15 Konstantatos G, Badioli M, Gaudrea L, Osmond J, Bernechea M, Arquer F P G, Gatti F and Koppens F H L 2011 Nat. Nanotechnol. 7 363
16 Adinolfi V and Sargent E H 2017 Nature 542 324
17 Kufer D, Nikitskiy I, Lasanta T and Navickaite G 2015 Adv. Mater. 27 176
18 Wang L, Jin K J, Xing J, Ge C, Lu H B, Zhou W J and Yang G Z 2013 Appl. Opt. 52 3473
19 Ohta H and Hosono H 2004 Mater. Today 7 42
20 Jiang H and Egawa T 2007 Appl. Phys. Lett. 90 7115
21 Tuta T, Yelboga T, Ulker E and Ozbay E 2008 Appl. Phys. Lett. 92 7433
22 Zhang Y, Shena S, Kim H J, Choi S, Ryou J, Dupuis R D and Narayan B 2009 Appl. Phys. Lett. 94 J165
23 Zhou W J, Jin K J, Guo H Z, Ge C, He M and Lu H B 2013 J. Appl. Phys. 4 1
24 Spitzer W G, Miller R C, Kleinman D A and Howarth L E 1962 Phys Rev 126 1710
25 Guo E J, Lu H B, He M, Xing J, Jin K J and Yang G Z 2010 Appl. Opt. 49 2557
26 Zhang M, Zhang H F, Lv K B, Chen W Y, Zhou J R, Shen L and Ruan S P 2012 Opt. Express 20 5936
27 Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
28 Jing F Y, Zhang D Z, Li F, Zhou J R, Sun D M and Ruan S P 2015 J. Alloys Compd. 650 97
29 Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shie C L, Nilsson B and Heeger A J 2009 Science 325 1665
30 Sablon K A, Sergeev A, Najmaei S and Dubey M 2017 Nanophotonics 6 1263
31 Nikitskiy I, Goossens S, Kufer D, Lasanta T, Navickaite G, Koppens F H L and Konstantatos G 2016 Nat. Commun. 7 11954
32 Sun Z H, Liu Z K, Li J H, Tai G A, Lau S P and Yan F 2012 Adv. Mater. 24 5878
33 Ni Z Y, Ma L L, Du S C, Xu Y, Yuan M, Fang H H, Wang Z, Xu M S, Li D S, Yang J Y, Hu W D, Pi X D and Yang D R 2017 ACS Nano. 11 9854
34 Bessonov A A, Allen M, Liu Y, Malik S, Bottomley J, Rushton A, Medina-Salazar I, Voutilainen M, Kallioinen S, Colli A, Bower C, Andrew P and Ryh\"anen T 2017 ACS Nano 11 5547
35 Tian H J, Liu Q L, Hu A Q, He X Y, Hu Z H and Guo X 2018 Opt. Express 26 5408
36 An X H, Liu F Z, Jung Y J and Kar S 2013 Nano Letters 13 909
37 Wang W H, Du R X, Guo X T, Jiang J, Zhao W W, Ni Z H, Wang X R, You Y M and Ni Z H 2017 Light Sci. Appl. 6 e17113
38 Xu K, Xu C, Xie Y Y, Deng J, Zhu Y X, Guo W L, Xun M, Teo K B K, Chen H D and Sun J 2015 IEEE Trans. Electron Devices 62 2802
[1] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[2] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[3] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[4] Experimental analysis of interface contact behavior using a novel image processing method
Jingyu Han(韩靖宇), Zhijun Luo(罗治军), Yuling Zhang(张玉玲), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2021, 30(5): 054601.
[5] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[6] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[7] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[8] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[9] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[10] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[11] Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique
Zhi-Hong Ye(叶志红), Xiao-Lin Wu(吴小林), Yao-Yao Li(李尧尧). Chin. Phys. B, 2020, 29(9): 090701.
[12] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
[13] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[14] Experimental evaluation of interface states during time-dependent dielectric breakdown of GaN-based MIS-HEMTs with LPCVD-SiNx gate dielectric
Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Tao-Tao Que(阙陶陶), Qiu-Ling Qiu(丘秋凌), Liang He(何亮), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(6): 067203.
[15] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
No Suggested Reading articles found!