Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064209    DOI: 10.1088/1674-1056/abda2b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity

Long-Pan Wang(汪陇盼)1, Cheng Ren(任承)1,†, De-Zhong Cao(曹德忠)1, Rui-Jun Lan(兰瑞君)1, and Feng Kang(康凤)2
1 School of Opto-Electronic Information Science and Technology, Yantai University, Yantai 264005, China;
2 Wenjing College, Yantai University, Yantai 264005, China
Abstract  Silicon-based electro-optic modulators are the key devices in integrated optoelectronics. Integration of the graphene layer and the photonic crystal (PC) cavity is a promising way of achieving compact modulators with high efficiency. In this paper, a high-quality (Q) acceptor-type PC nanocavity is employed to integrate with a single-layer graphene for realizing strong modulation. Through tuning the chemical potential of graphene, a large wavelength shift of 2.62 nm and a Q factor modulation of larger than 5 are achieved. A modulation depth (12.8 dB) of the reflection spectrum is also obtained. Moreover, the optimized PC nanocavity has a large free spectral range of 131.59 nm, which can effectively enhance the flexibility of the modulator. It shows that the proposed graphene-based PC nanocavity is a potential candidate for compact, high-contrast, and low-power absorptive modulators in integrated silicon chips.
Keywords:  graphene      photonic crystal nanocavity      tunable  
Received:  29 September 2020      Revised:  08 January 2021      Accepted manuscript online:  11 January 2021
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.82.Gw (Other integrated-optical elements and systems)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674273) and the Science and Technology Plan Projects of Colleges and Universities of Shandong Province, China (Grant No. J15LJ52).
Corresponding Authors:  Cheng Ren     E-mail:  cren@ytu.edu.cn

Cite this article: 

Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤) Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity 2021 Chin. Phys. B 30 064209

[1] Chen L, Preston K, Manipatruni S and Lipson M 2009 Opt. Express 17 15248
[2] Tanabe T, Nishiguchi K, Kuramochi E and Notomi M 2009 Opt. Express 17 22505
[3] Shakoor A, Nozaki K, Kuramochi E, Nishiguchi K, Shinya A and Notomi M 2014 Opt. Express 22 28623
[4] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T and Mueller T 2018 Nature 562 101
[5] Hanson G W 2008 J. Appl. Phys. 103 064302
[6] Stauber T, Peres N M R and Guinea F 2007 Phys. Rev. B 76 205423
[7] Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004
[8] Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Sarma S D, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 246803
[9] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T and Mueller T 2013 Nat. Photon. 7 892
[10] Qiu C, Gao W, Vajtai R, Ajayan P M, Kono J and Xu Q 2014 Nano Lett. 14 6811
[11] Du W, Li E P and Hao R 2014 IEEE Photon. Technol. Lett. 26 2008
[12] Hu Y, Pantouvaki M, Campenhout J V, Brems S, Asselberghs I, Huyghebaert C, Absil P and Thourhout D V 2016 Laser Photon. Rev. 10 307
[13] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[14] Ye S W, Yuan F, Zou X H, Shah M K, Lu R G and Liu Y 2017 IEEE J. Sel. Top. Quantum Electron. 23 3400105
[15] Liu M, Yin X and Zhang X 2012 Nano Lett. 12 1482
[16] Du L, Li Q, Li S, Hu, F, Xiong X, Li Y, Zhang W and Han J 2016 Chin. Phys. B 25 027301
[17] Jiang R, Wu Z, Han Z and Jung H 2016 Chin. Phys. B 25 106803
[18] Majumdar A, Kim J, Vuckovic J and Wang F 2013 Nano Lett. 13 515
[19] Gan X, Shiue R, Gao Y, Mak K F, Yao X, Li L, Szep A, Walker D J, Hone J, Heinz T F and Englund D 2013 Nano Lett. 13 691
[20] Chiba H and Notomi M 2019 Opt. Express 27 37952
[21] Gan X, Mak K F, Gao Y, You Y, Hatami F, Hone J, Heinz T F and Englund D 2012 Nano Lett. 12 5626
[22] Pan T, Qiu C, Wu J, Jiang X, Liu B, Yang Y, Zhou H, Soref R and Su Y 2015 Opt. Express 23 23357
[23] Akahane Y, Mochizuki M, Asano T, Tanaka Y and Noda S 2003 Appl. Phys. Lett. 82 1341
[24] Akahane Y, Asano T, Song B S and Noda S 2005 Opt. Express 13 1202
[25] Asano T, Ochi Y, Takahashi Y, Kishimoto K and Noda S 2017 Opt. Express 25 1769
[26] Du W, Hao R and Li E 2014 Opt. Commun. 323 49
[27] Pan T, Qiu C, Wu J, Jiang X, Liu B, Yang Y, Zhou H, Soref R and Su Y 2015 Opt. Express 23 23357
[1] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[2] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[3] Direct growth of graphene films without catalyst on flexible glass substrates by PECVD
Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔). Chin. Phys. B, 2021, 30(9): 098101.
[4] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[5] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[6] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[7] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[8] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[9] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[10] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[11] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[12] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[13] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[14] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[15] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
No Suggested Reading articles found!