Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 066201    DOI: 10.1088/1674-1056/abd9b2
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum

Xiao-Feng Shi(石晓峰)1, Dong-Jun Ma(马东军)1,†, Song-lin Dang(党松琳)2, Zong-Qiang Ma(马宗强)1, Hai-Quan Sun(孙海权)1, An-Min He(何安民)1, and Pei Wang(王裴)1,3,‡
1 Institute of Applied Physical and Computational Mathematics, Beijing 100094, China;
2 Jiangxi University of Applied Science, Nanchang 330103, China;
3 Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract  The photon Doppler velocimetry (PDV) spectrum is investigated in an attempt to reveal the particle parameters of ejecta from shock-loaded samples in a vacuum. A GPU-accelerated Monte-Carlo algorithm, which considers the multiple-scattering effects of light, is applied to reconstruct the light field of the ejecta and simulate the corresponding PDV spectrum. The influence of the velocity profile, total area mass, and particle size of the ejecta on the simulated spectra is discussed qualitatively. To facilitate a quantitative discussion, a novel theoretical optical model is proposed in which the single-scattering assumption is applied. With this model, the relationships between the particle parameters of ejecta and the peak information of the PDV spectrum are derived, enabling direct extraction of the particle parameters from the PDV spectrum. The values of the ejecta parameters estimated from the experimental spectrum are in good agreement with those measured by a piezoelectric probe.
Keywords:  ejecta      photon Doppler velocimetry      Monte-Carlo algorithm      light scattering  
Received:  02 December 2020      Revised:  05 January 2021      Accepted manuscript online:  08 January 2021
PACS:  62.50.Ef (Shock wave effects in solids and liquids)  
  42.25.Dd (Wave propagation in random media)  
  42.79.Qx (Range finders, remote sensing devices; laser Doppler velocimeters, SAR, And LIDAR)  
  62.20.M- (Structural failure of materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11902043 and 11772065) and the Science Challenge Project (Grant No. TZ2016001).
Corresponding Authors:  Dong-Jun Ma, Pei Wang     E-mail:  ma_dongjun@iapcm.ac.cn;wangpei@iapcm.ac.cn

Cite this article: 

Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Song-lin Dang(党松琳), Zong-Qiang Ma(马宗强), Hai-Quan Sun(孙海权), An-Min He(何安民), and Pei Wang(王裴) Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum 2021 Chin. Phys. B 30 066201

[1] Sollier A and Lescoute E 2020 Int. J. Impact Eng. 136 103429
[2] Monfared S K, Oro D M, Graver M, Hammerberg J E, Lalone B M, Pack C L, Schauer M M, Stevens G D, Stone J B and Turley W D 2014 J. Appl. Phys. 116 063504
[3] Asay J R, Mix L P and Perry F C 1976 Appl. Phys. Lett. 29 284
[4] Speight C S, Harper L and Smeeton V S 1989 Rev. Sci. Instrum. 60 3802
[5] Ogorodnikov V A, Ivanov A G, Mikhailov A L, Kryukov N I and Golubev V A 1998 Combust. Explos. Shock Waves 34 696
[6] Buttler W T, Williams R J R and Najjar F M 2017 J. Dyn. Behav. Mater. 3 151
[7] Yeager J D, Bowden P R, Guildenbecher D R and Olles J D 2017 J. Appl. Phys. 122 035901
[8] Held M 1996 Propellants Explos. Pyrotech. 21 235
[9] Tokheim R E, Curran D R, Seaman L, Cooper T and Schirmann D 1999 Int. J. Impact Eng. 23 933
[10] Masters N D, Fisher A, Kalantar D, Stlken J, Smith C, Vignes R, Burns S, Doeppner T, Kritcher A and Park H S 2016 J. Phys.: Conf. Ser. 717 012108
[11] Asay J R 1978 J. Appl. Phys. 49 6173
[12] He W, Xin J, Chu G, Li J and Gu Y 2014 Opt. Express 22 18924
[13] Vogan W S, Anderson W W, Grover M, Hammerberg J E, King N S P, Lamoreaux S K, Macrum G, Morley K B, Rigg P A and Stevens G D 2005 J. Appl. Phys. 98 113508
[14] Sorenson D S, Minich R W, Romero J L, Tunnell T W and Malone R M 2002 J. Appl. Phys. 92 5830
[15] Sorenson D S, Capelle G A, Grover M, Johnson R P and Turley W D 2017 J. Dyn. Behav. Mater. 3 233
[16] Hammerberg J E, Buttler W T, Llobet A, Morris C, Goett J, Manzanares R, Saunders A, Schmidt D, Tainter A and Vogan-Mcneil W 2018 AIP Conf. Proc. 1979 080006
[17] Monfared S K, Buttler W T, Frayer D K, Grover M, LaLone B M, Stevens G D, Stone J B, Turley W D and Schauer M M 2015 J. Appl. Phys. 117 223105
[18] La-Lone B M, Marshall B R, Miller E K, Stevens G D, Turley W D and Veeser L R 2015 Rev. Sci. Instrum. 86 023112
[19] Ogorodnikov V A, Mikhaylov A L, Erunov S V, Antipov M V and Chudakov E A 2017 J. Dyn. Behav. Mater. 3 225
[20] Andriyash A V, Astashkin M V, Baranov V K, Golubinskii A G, Irinichev D A, Khatunkin V Y, Kondratev A N, Kuratov S E, Mazanov V A, Rogozkin D B and Stepushkin S N 2018 J. Appl. Phys. 123 243102
[21] Buttler W T, Oro D M, Dimonte G, et al. 2009 In Proceedings NEDPC 2009. LA-UR-10-00734
[22] Sun H, Wang P, Chen D and Ma D 2016 Acta Phys. Sin. 65 104702 (in Chinese)
[23] Fedorov A V, Gnutov I S and Yagovkin A O 2018 J. Exp. Theor. Phys. 126 76
[24] Kondrat'Ev A, Andriyash A V and Kuratov S E 2020 J. Quantum Spectrosc. Radiat. Transfer 246 106925
[25] Buttler W T, Oro D M, Dimonte G, et al. 2009 In Proceedings NEDPC 2009, LA-UR-10-00734
[26] Reguigui N M, Ackerson B J, Dorri-Nowkoorani F, Dougherty R L and Nobbmann U 1997 J. Thermophys. Heat Transfer 11 400
[27] Binzoni T, Liemert A, Kienle A and Martelli F 2016 Appl. Opt. 55 8500
[28] Mie G 1908 Ann. Phys. 25 377
[29] Durand O and Soulard L 2015 J. Appl. Phys. 117 165903
[30] Durand O and Soulard L 2012 J. Appl. Phys. 111 044901
[31] Schauer M M, Buttler W T, Frayer D K, Grover M and Turley W D 2017 J. Dyn. Behav. Mater. 3 217
[32] He A, Wang P, Shao J and Duan S 2017 Chin. Phys. B 23 047102
[33] Bell D J, Routley N R, Millett J C F, Whiteman G and Keightley P T 2017 J. Dyn. Behav. Mater. 3 208
[34] Andriyash A V, A D S, Zhakhovskya V V, Kalashnikovc D A, Kondrateva A N, Kuratova S E, Mikhailovc A L, Rogozkina D B, Fedorovc A V, Finyushinc S A and Chudakovc E A 2020 J. Exp. Theor. Phys. 130 338
[35] Franzkowiak J E, Mercier P, Prudhomme G and Berthe L 2018 Appl. Opt. 57 11
[1] Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique
Shuai Hu(胡帅), Taichang Gao(高太长), Hao Li(李浩), Lei Liu(刘磊), Ming Chen(陈鸣), Bo Yang(杨波). Chin. Phys. B, 2018, 27(5): 054215.
[2] Ejecta from periodic grooved Sn surface under unsupported shocks
Wen-Bin Liu(刘文斌), Dong-Jun Ma(马东军), An-Min He(何安民), Pei Wang(王裴). Chin. Phys. B, 2018, 27(1): 016202.
[3] Difference scattering field properties between periodic defect particles and three-dimensional slightly rough optical surface
Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾). Chin. Phys. B, 2017, 26(6): 064201.
[4] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[5] Theoretical studies on particle shape classification based on simultaneous small forward angle light scattering and aerodynamic sizing
Jin-Bi Zhang(张金碧), Lei Ding(丁蕾), Ying-Ping Wang(王颖萍), Li Zhang(张莉), Jin-Lei Wu(吴金雷), Hai-Yang Zheng(郑海洋), Li Fang(方黎). Chin. Phys. B, 2016, 25(3): 034201.
[6] A new kind of superimposing morphology for enhancing the light scattering in thin film silicon solar cells:Combining random and periodic structure
Huang Zhen-Hua, Zhang Jian-Jun, Ni Jian, Wang Hao, Zhao Ying. Chin. Phys. B, 2014, 23(8): 084205.
[7] Unidirectional emissions from dielectric photonic circuits decorated with plasmonic phased antenna arrays
Ding Wei, Chen Yu-Hui, Li Zhi-Yuan. Chin. Phys. B, 2014, 23(3): 037301.
[8] Dynamical Casimir effect in superradiant light scattering by Bose–Einstein condensate in an optomechanical cavity
Sonam Mahajan, Neha Aggarwal, Aranya B Bhattacherjee, ManMohan. Chin. Phys. B, 2014, 23(2): 020315.
[9] Light scattering effect of submicro-textured Ag/Al composite films prepared at lower substrate temperatures
Tang Ping-Lin, Wu Yong-Gang, Tong Guang-De, Xia Zi-Huan, Liu Ren-Chen, Liang Zhao-Ming, Zhou Jian. Chin. Phys. B, 2013, 22(7): 078801.
[10] Measurements of NO2 mixing ratios with topographic target light scattering-differential optical absorption spectroscopy system and comparisons to point monitoring technique
Wang Yang, Li Ang, Xie Pin-Hua, Zeng Yi, Wang Rui-Bin, Chen Hao, Pei Xian, Liu Jian-Guo, and Liu Wen-Qing. Chin. Phys. B, 2012, 21(11): 114211.
[11] Investigation on the scattering effect of ceramic Nd:YAG
Li Cheng-Ming, Zong Nan, Gao Hong-Wei, Xu Zu-Yan, Liu Wen-Bin, Pan Yu-Bai, Feng Xi-Qi. Chin. Phys. B, 2010, 19(6): 064202.
[12] Light scattering by a spherical particle with multiple densely packed inclusions
Sun Xian-Ming, Wang Hai-Hua, Liu Wan-Qiang, Shen Jin. Chin. Phys. B, 2009, 18(3): 1040-1044.
[13] Light scattering of nanocrystalline TiO2 film used in dye-sensitized solar cells
Xiong Bi-Tao, Zhou Bao-Xue, Bai Jing, Zheng Qing, Liu Yan-Biao, Cai Wei-Min, Cai Jun. Chin. Phys. B, 2008, 17(10): 3713-3719.
No Suggested Reading articles found!