Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060505    DOI: 10.1088/1674-1056/abd92f
GENERAL Prev   Next  

Behaviors of thermalization for the Fermi-Pasta-Ulam-Tsingou system with small number of particles

Zhenjun Zhang(张振俊), Jing Kang(康静), and Wen Wen(文文)
College of Science, Hohai University, Nanjing 210098, China
Abstract  We study the behaviors of thermalization in Fermi-Pasta-Ulam-Tsingou (FPUT) system with small number of particles using periodic boundary conditions. The total energy has initially equidistributed among some of the lowest frequency modes. The thermalization time teq depending on system's energy density ε scales as teqε-4 only within a certain range of nonlinearity. In this range of nonlinearity, energies can interchange between the initial excited modes and other modes continuously with time until reaching the thermalized state. With a further decreasing nonlinearity, a steeper growth than ε-4 will appear. In the very weakly nonlinear regime, energies on low frequency modes are found to be frozen on large time scales. Redistribution of mode energies happens through the resonances of high frequency modes.
Keywords:  FPUT system      thermalization      small number of particles  
Received:  28 November 2020      Revised:  31 December 2020      Accepted manuscript online:  07 January 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.60.Cd (Classical transport)  
  63.10.+a (General theory)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2017B17114 and B210202152).
Corresponding Authors:  Zhenjun Zhang     E-mail:  hi_zhangzhenjun@sina.com

Cite this article: 

Zhenjun Zhang(张振俊), Jing Kang(康静), and Wen Wen(文文) Behaviors of thermalization for the Fermi-Pasta-Ulam-Tsingou system with small number of particles 2021 Chin. Phys. B 30 060505

[1] Fermi E, Pasta J and Ulam S 1965 in Collected Papers of E. Fermi, edited by E. Segré (Chicago: University of Chicago Press) 2 978
[2] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[3] Izrailev F M and Chirikov B V 1966 Sov. Phys. Dokl. 11 30
[4] Bocchieri R, Scotti A, Bearzi B and Loinger A 1970 Phys. Rev. A 2 2013
[5] Fucito E, Marchesoni F, Marinari E, Parisi G, Peliti L and Ruffo S 1982 J. Phys. (Paris) 43 707
[6] Ferguson E E, Flashka H and McLaughlin D W 1982 J. Comput. Phys. 45 157
[7] Livi R, Pettini M, Ruffo S, Sparpaglione M and Vulpiani A 1983 Phys. Rev. A 28 3544
[8] Livi R, Pettini M, Ruffo S, Sparpaglione M and Vulpiani A 1985 Phys. Rev. A 31 1039
[9] Pettini M and Landolfi M 1990 Phys. Rev. A 41 768
[10] Pettini M and Cerruti-Sola M 1991 Phys. Rev. A 44 975
[11] Kantz H, Livi R and Ruffo S 1994 Journal of Statistical Physics 76 627
[12] De Luca J, Lichtenberg A J and Lieberman M A 1995 Chaos 5 283
[13] De Luca J, Lichtenberg A J and Ruffo S 1995 Phys. Rev. E 51 2877
[14] Casetti L, Cerruti-Sola M, Pettini M and Cohen E G D 1997 Phys. Rev. E 55 6566
[15] De Luca J, Lichtenberg A J and Ruffo S 1999 Phys. Rev. E 60 3781
[16] Ullmann K, Lichtenberg A J and Corso G 2000 Phys. Rev. E 61 2471
[17] Ponno A, Galgani L and Guerra F 2000 Phys. Rev. E 61 7081
[18] Villain P and Lewenstein M 2000 Phys. Rev. A 62 043601
[19] De Luca J and Lichtenberg A 2002 Phys. Rev. E 66 026206
[20] Berchialla L, Galgani L and Giorgilli A 2004 Discrete Contin. Dyn. Syst. 11 855
[21] Berchialla L, Giorgilli A and Paleari S 2004 Phys. Lett. A 321 167
[22] Campbell D K, Rosenau P and Zaslavsky G M 2005 Chaos 15 015101
[23] Berman G P and Izrailev F M 2005 Chaos 15 015104
[24] Lichtenberg A J, Mirnov V V and Day C 2005 Chaos 15 015109
[25] Flach S, Ivanchenko M V and Kanakov O I 2005 Phys. Rev. Lett. 95 064102
[26] Penati T and Flach S 2007 Chaos 17 023102
[27] Carati A, Galgani L, Giorgilli A and Paleari S 2007 Phys. Rev. E 76 022104
[28] Benettin G, Livi R and Ponno A 2009 Journal of Statistical Physics 135 873
[29] Christodoulidi H, Efthymiopoulos C and Bountis T 2010 Phys. Rev. E 81 016210
[30] Ponno A, Christodoulidi H, Skokos Ch and Flach S 2011 Chaos 21 043127
[31] Benettin G and Ponno A 2011 Journal of Statistical Physics 144 793
[32] Genta T, Giorgilli A, Paleari S and Penati T 2012 Phys. Lett. A 376 2038
[33] Benettin G, Christodoulidi H and Ponno A 2013 Journal of Statistical Physics 152 195
[34] Maiocchi A, Bambusi D and Carati A 2014 Journal of Statistical Physics 155 300
[35] Zhang Z J, Tang C M and Tong P Q 2016 Phys. Rev. E 93 022216
[36] Guasoni M, Garnier J, Rumpf B, Sugny D, Fatome J, Amrani F, Millot G and Picozzi A 2017 Phys. Rev. X 7 011025
[37] Danieli C, Campbell D K and Flach S 2017 Phys. Rev. E 95 060202
[38] Zhang Z J, Tang C M, Kang J and Tong P Q 2017 Chin. Phys. B 26 100505
[39] Falkovich G, Lvov V and Zakharov V E 1992 Kolmogorov spectra of turbulence I. Wave turbulence (Berlin: Springer)
[40] Zakharov V, Dias F and Pushkarev A 2004 Phys. Rep. 398 1
[41] Nazarenko S 2011 Wave Turbulence, Lecture Notes in Physics (Berlin: Springer Verlag) Vol. 825
[42] OnoratoM. Vozella L, Proment D and Lvov Y V 2015 Proc. Natl. Acad. Sci. USA 112 4208
[43] Lvov Y V and Onorato M 2018 Phys. Rev. Lett. 120 144301
[44] Pistone L, Onorato M and Chibbaro S 2018 Europhys. Lett. 121 44003
[45] Fu W C, Zhang Y and Zhao H 2019 Phys. Rev. E 100 010101
[46] Pistone L, Chibbaro S, Bustamante M D, Lvov Y V and Onorato M 2019 Mathematics in Engineering 1 672
[47] Bustamante M D, Hutchinson K, Lvov Y V and Onorato M 2019 Commun. Nonlinear Sci. Numer. Simul. 73 437
[48] Wang Z, Fu W C, Zhang Y and Zhao H 2020 Phys. Rev. Lett. 124 186401
[49] Sun L L, Zhang Z J and Tong P Q 2020 New J. Phys. 22 073027
[50] Fu W C, Zhang Y and Zhao H 2019 New J. Phys. 21 043009
[51] Skokos Ch and Gerlach E 2010 Phys. Rev. E 82 036704
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Quantum quenches in the Dicke model: Thermalization and failure of the generalized Gibbs ensemble
Xiao-Qiang Su(苏晓强) and You-Quan Zhao(赵有权). Chin. Phys. B, 2020, 29(12): 120506.
[3] Identifying the closeness of eigenstates in quantum many-body systems
Hai-bin Li(李海彬), Yang Yang(杨扬), Pei Wang(王沛), Xiao-guang Wang(王晓光). Chin. Phys. B, 2017, 26(8): 080502.
[4] Thermalization time of thin metal film heated by short pulse laser
Xu Hong-Yu (徐红玉), Zhang Yuan-Chong (张元冲), Song Ya-Qin (宋亚勤), Chen Dian-Yun (陈殿云). Chin. Phys. B, 2004, 13(10): 1758-1765.
No Suggested Reading articles found!