Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068402    DOI: 10.1088/1674-1056/abd7dc
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

SBT-memristor-based crossbar memory circuit

Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚)
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  Implementing memory using nonvolatile, low power, and nano-structure memristors has elicited widespread interest. In this paper, the SPICE model of Sr0.95Ba0.05TiO3 (SBT)-memristor was established and the corresponding characteristic was analyzed. Based on an SBT-memristor, the process of writing, reading, and rewriting of the binary and multi-value memory circuit was analyzed. Moreover, we verified the SBT-memristor-based 4×4 crossbar binary and multi-value memory circuits through comprehensive simulations, and analyzed the sneak-path current and memory density. Finally, we apply the 8×8 crossbar multi-value memory circuits to the images memory.
Keywords:  memristor      memory      SPICE      crossbar  
Received:  03 November 2020      Revised:  15 December 2020      Accepted manuscript online:  04 January 2021
PACS:  84.32.-y (Passive circuit components)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61703246 and 61703247), the Qingdao Science and Technology Plan Project (Grant No. 19-6-2-2-cg), and the Elite Project of Shandong University of Science and Technology.
Corresponding Authors:  Gang Dou     E-mail:  dougang521@sdust.edu.cn

Cite this article: 

Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚) SBT-memristor-based crossbar memory circuit 2021 Chin. Phys. B 30 068402

[1] Yu S M and Chen P Y 2016 IEEE Solid State Circ. Mag. 8 43
[2] Yakopcic C, Taha T M, Subramanyam G, Pino R E and Rogers S 2011 Proceedings of the International Joint Conference on Neural Networks, July 31-August 5, 2011 California, USA, p. 3243
[3] Chua L O 1971 IEEE Trans. Circ. Theory 18 507
[4] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[5] Das M, Kumar A, Kumar S, Mandal B, Siddharth G, Kumar P, Htay M T and Mukherjee S 2020 IEEE Trans. Nanotechnol. 19 332
[6] Kumar S, Strachan J P and Williams R S 2017 Nature 548 318
[7] Cheng P F, Sun K and Hu Y H 2016 Nano Lett. 16 572
[8] Miao F, Yi W, Goldfarb I, Yang J J, Zhang M X, Pickett M D, Strachan J P, Medeiros R G and Williams R S 2012 ACS Nano 6 2312
[9] Wang Z W, Yin M H, Zhang T, Cai Y M, Wang Y Y, Yang Y C and Huang R 2016 Nanoscale 8 14015
[10] Nandakumar S R, Minvielle M, Nagar S, Dubourdieu C and Rajendran B 2016 Nano Lett. 16 1602
[11] Li C L, Li Z Y, Feng W, Tong Y N, Du J R and Wei D Q 2019 AEU Int. J. Electron. Commun. 110 152861
[12] Li H M, Yang Y F, Li W, He S B and Li C L 2020 Eur. Phys. J. Plus 135 579
[13] Liu H J, Chen C L, Zhu X, Sun S Y, Li Q J and Li Z W 2020 Chin. Phys. B 29 028502
[14] Liu Y C, Lin Y, Wang Z Q and Xu H Y 2019 Acta Phys. Sin. 68 168504 (in Chinese)
[15] Hong Q H, Yan R A, Wang C H and Sun J R 2020 IEEE Trans. Biomed. Circuits Syst. 14 1036
[16] Hong Q H, Shi Z R, Sun J R and Du S C 2021 Neural Comput. Appl. 33 4901
[17] Wang Z R, Joshi S, Savelev, S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barnell M, Li G L, Xin H L, Williams R S, Xia Q F and Yang J J 2017 Nat. Mater. 16 101
[18] Soudry D, Castro D D, Gal A, Kolodny A and Kvatinsky S 2017 IEEE Trans. Neural Networks Learn. Sys. 26 2408
[19] Di V M, Pershin Y V and Chua L O 2009 Proc. IEEE 97 1717
[20] Mozaffari S N, Tragoudas S and Haniotakis T 2017 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36 1018
[21] Zhu X, Yang X J, Wu C Q, Xiao N, Wu J J and Yi X 2013 IEEE Trans. Circuits Syst. Express Briefs 60 682
[22] Zhou Z Y, Zhao J H, Chen A P, Pei Y F, Xiao Z A, Wang G, Chen J S, Fu G S and Yan X B 2020 Mater. Horizons 7 1106
[23] Dongale T D, Patil K P, Mullani S B, More K V, Delekar S D, Patil P S, Gaikwad P K and Kamat R K 2015 Mater. Sci. Semicond. Process. 35 174
[24] Chen C Y, Shih H C, Wu C W, Lin C H, Chiu P F, Sheu S S and Chen F T 2015 IEEE Trans. Comput. 64 180
[25] Shim W, Luo Y D, Seo J S and Yu S M 2020 IEEE Trans. Electron Dev. 67 2318
[26] Alfaro R D, Sassine G, Rafhay Q, Ghibaudo G, Molas G and Nowak E 2019 IEEE Trans. Electron Dev. 66 3318
[27] Yin S H, Sun X Y, Yu S M and Seo J S 2020 IEEE Trans. Electron Dev. 67 4185
[28] Jin F Y, Chang K C, Chang T C, Tsai T M, Pan C H, Lin C Y, Chen P H, Chen M C, Huang H C, Lo I, Zheng J C and Sze S M 2016 Appl. Phys. Express 9 061501
[29] Patel K, Cottom J, Bosman M, Kenyon A J and Shluger A L 2019 Microelectron. Reliab. 98 144
[30] Baek I J and Cho W J 2017 J. Nanosci. Nanotechnol. 17 3065
[31] Chen F T, Lee H Y, Chen Y S, Hsu Y Y, Zhang L J, Chen P S, Chen W S, Gu P Y, Liu W H, Wang S M, Tsai C H, Sheu S S, Tsai M J and Huang R 2011 Sci. China Inf. Sci. 54 1073
[32] Raghavan N, Frey D D, Bosman M and Pey K L 2015 Microelectron. Reliab. 55 1422
[33] Mehonic A, Gerard T and Kenyon A J 2017 Appl. Phys. Lett. 111 233502
[34] Zidan M A, Fahmy H A H, Hussain M M and Salama K N 2013 Microelectron. J. 44 176
[35] Krestinskaya O, Ibrayev T and James A P 2018 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37 1143
[36] Shaarawy N, Emara A, El-Naggar A M, Elbtity M E, Ghoneima M and Radwan A G 2018 Microelectron. J. 73 75
[37] Dubey S K and Islam A 2020 Microsyst. Technol. 26 1325
[38] Rabbani P, Dehghani R and Shahpari N 2015 Microelectron. J. 46 1283
[39] Zhang Y M, Dou G, Sun Z, Guo M and Li Y X 2017 Int. J. Bifurc. Chaos 27 1750148
[40] Dou G, Yu Y, Guo M, Zhang Y M, Sun Z and Li Y X 2017 Chin. Phys. Lett. 34 038502
[41] Sharif K F, Islam R, Biswas S N and Groza V 2017 Proceedings of IEEE Symposium on Computer Applications &$ Industrial Electronics, April 24-25, 2017, Langkawi, Malaysia, p. 37
[1] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[2] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
[3] Dynamics of high-frequency modulated waves in a nonlinear dissipative continuous bi-inductance network
S M Ngounou and F B Pelap. Chin. Phys. B, 2021, 30(6): 060504.
[4] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[5] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[6] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[7] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[8] Universal memory based on phase-change materials: From phase-change random access memory to optoelectronic hybrid storage
Bo Liu(刘波), Tao Wei(魏涛), Jing Hu(胡敬), Wanfei Li(李宛飞), Yun Ling(凌云), Qianqian Liu(刘倩倩), Miao Cheng(程淼), and Zhitang Song(宋志棠). Chin. Phys. B, 2021, 30(5): 058504.
[9] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[10] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[11] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[12] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[13] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[14] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[15] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
No Suggested Reading articles found!