Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068402    DOI: 10.1088/1674-1056/abd7dc
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

SBT-memristor-based crossbar memory circuit

Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚)
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  Implementing memory using nonvolatile, low power, and nano-structure memristors has elicited widespread interest. In this paper, the SPICE model of Sr0.95Ba0.05TiO3 (SBT)-memristor was established and the corresponding characteristic was analyzed. Based on an SBT-memristor, the process of writing, reading, and rewriting of the binary and multi-value memory circuit was analyzed. Moreover, we verified the SBT-memristor-based 4×4 crossbar binary and multi-value memory circuits through comprehensive simulations, and analyzed the sneak-path current and memory density. Finally, we apply the 8×8 crossbar multi-value memory circuits to the images memory.
Keywords:  memristor      memory      SPICE      crossbar  
Received:  03 November 2020      Revised:  15 December 2020      Accepted manuscript online:  04 January 2021
PACS:  84.32.-y (Passive circuit components)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61703246 and 61703247), the Qingdao Science and Technology Plan Project (Grant No. 19-6-2-2-cg), and the Elite Project of Shandong University of Science and Technology.
Corresponding Authors:  Gang Dou     E-mail:  dougang521@sdust.edu.cn

Cite this article: 

Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚) SBT-memristor-based crossbar memory circuit 2021 Chin. Phys. B 30 068402

[1] Yu S M and Chen P Y 2016 IEEE Solid State Circ. Mag. 8 43
[2] Yakopcic C, Taha T M, Subramanyam G, Pino R E and Rogers S 2011 Proceedings of the International Joint Conference on Neural Networks, July 31-August 5, 2011 California, USA, p. 3243
[3] Chua L O 1971 IEEE Trans. Circ. Theory 18 507
[4] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[5] Das M, Kumar A, Kumar S, Mandal B, Siddharth G, Kumar P, Htay M T and Mukherjee S 2020 IEEE Trans. Nanotechnol. 19 332
[6] Kumar S, Strachan J P and Williams R S 2017 Nature 548 318
[7] Cheng P F, Sun K and Hu Y H 2016 Nano Lett. 16 572
[8] Miao F, Yi W, Goldfarb I, Yang J J, Zhang M X, Pickett M D, Strachan J P, Medeiros R G and Williams R S 2012 ACS Nano 6 2312
[9] Wang Z W, Yin M H, Zhang T, Cai Y M, Wang Y Y, Yang Y C and Huang R 2016 Nanoscale 8 14015
[10] Nandakumar S R, Minvielle M, Nagar S, Dubourdieu C and Rajendran B 2016 Nano Lett. 16 1602
[11] Li C L, Li Z Y, Feng W, Tong Y N, Du J R and Wei D Q 2019 AEU Int. J. Electron. Commun. 110 152861
[12] Li H M, Yang Y F, Li W, He S B and Li C L 2020 Eur. Phys. J. Plus 135 579
[13] Liu H J, Chen C L, Zhu X, Sun S Y, Li Q J and Li Z W 2020 Chin. Phys. B 29 028502
[14] Liu Y C, Lin Y, Wang Z Q and Xu H Y 2019 Acta Phys. Sin. 68 168504 (in Chinese)
[15] Hong Q H, Yan R A, Wang C H and Sun J R 2020 IEEE Trans. Biomed. Circuits Syst. 14 1036
[16] Hong Q H, Shi Z R, Sun J R and Du S C 2021 Neural Comput. Appl. 33 4901
[17] Wang Z R, Joshi S, Savelev, S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barnell M, Li G L, Xin H L, Williams R S, Xia Q F and Yang J J 2017 Nat. Mater. 16 101
[18] Soudry D, Castro D D, Gal A, Kolodny A and Kvatinsky S 2017 IEEE Trans. Neural Networks Learn. Sys. 26 2408
[19] Di V M, Pershin Y V and Chua L O 2009 Proc. IEEE 97 1717
[20] Mozaffari S N, Tragoudas S and Haniotakis T 2017 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36 1018
[21] Zhu X, Yang X J, Wu C Q, Xiao N, Wu J J and Yi X 2013 IEEE Trans. Circuits Syst. Express Briefs 60 682
[22] Zhou Z Y, Zhao J H, Chen A P, Pei Y F, Xiao Z A, Wang G, Chen J S, Fu G S and Yan X B 2020 Mater. Horizons 7 1106
[23] Dongale T D, Patil K P, Mullani S B, More K V, Delekar S D, Patil P S, Gaikwad P K and Kamat R K 2015 Mater. Sci. Semicond. Process. 35 174
[24] Chen C Y, Shih H C, Wu C W, Lin C H, Chiu P F, Sheu S S and Chen F T 2015 IEEE Trans. Comput. 64 180
[25] Shim W, Luo Y D, Seo J S and Yu S M 2020 IEEE Trans. Electron Dev. 67 2318
[26] Alfaro R D, Sassine G, Rafhay Q, Ghibaudo G, Molas G and Nowak E 2019 IEEE Trans. Electron Dev. 66 3318
[27] Yin S H, Sun X Y, Yu S M and Seo J S 2020 IEEE Trans. Electron Dev. 67 4185
[28] Jin F Y, Chang K C, Chang T C, Tsai T M, Pan C H, Lin C Y, Chen P H, Chen M C, Huang H C, Lo I, Zheng J C and Sze S M 2016 Appl. Phys. Express 9 061501
[29] Patel K, Cottom J, Bosman M, Kenyon A J and Shluger A L 2019 Microelectron. Reliab. 98 144
[30] Baek I J and Cho W J 2017 J. Nanosci. Nanotechnol. 17 3065
[31] Chen F T, Lee H Y, Chen Y S, Hsu Y Y, Zhang L J, Chen P S, Chen W S, Gu P Y, Liu W H, Wang S M, Tsai C H, Sheu S S, Tsai M J and Huang R 2011 Sci. China Inf. Sci. 54 1073
[32] Raghavan N, Frey D D, Bosman M and Pey K L 2015 Microelectron. Reliab. 55 1422
[33] Mehonic A, Gerard T and Kenyon A J 2017 Appl. Phys. Lett. 111 233502
[34] Zidan M A, Fahmy H A H, Hussain M M and Salama K N 2013 Microelectron. J. 44 176
[35] Krestinskaya O, Ibrayev T and James A P 2018 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37 1143
[36] Shaarawy N, Emara A, El-Naggar A M, Elbtity M E, Ghoneima M and Radwan A G 2018 Microelectron. J. 73 75
[37] Dubey S K and Islam A 2020 Microsyst. Technol. 26 1325
[38] Rabbani P, Dehghani R and Shahpari N 2015 Microelectron. J. 46 1283
[39] Zhang Y M, Dou G, Sun Z, Guo M and Li Y X 2017 Int. J. Bifurc. Chaos 27 1750148
[40] Dou G, Yu Y, Guo M, Zhang Y M, Sun Z and Li Y X 2017 Chin. Phys. Lett. 34 038502
[41] Sharif K F, Islam R, Biswas S N and Groza V 2017 Proceedings of IEEE Symposium on Computer Applications &$ Industrial Electronics, April 24-25, 2017, Langkawi, Malaysia, p. 37
[1] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄), Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[4] High-performance amorphous In—Ga—Zn—O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军), David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[8] Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network
Tong-Bao Zhang(张同宝), Hui-Jian Liang(梁慧剑),Shi-Guang Wang(王时光), and Chen-Guang Ouyang(欧阳晨光). Chin. Phys. B, 2022, 31(8): 080701.
[9] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[10] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[11] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[12] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[13] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[14] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[15] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
No Suggested Reading articles found!