Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060203    DOI: 10.1088/1674-1056/abd7da
GENERAL Prev   Next  

$\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule

Hao Shen(沈浩)1,†, Jia-Cheng Wu(吴佳成)1, Jian-Wei Xia(夏建伟)2, and Zhen Wang(王震)3
1 College of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan 243032, China;
2 School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, China;
3 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  We investigate the problem of $\mathcal{H}_{\infty}$ state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule, as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously. Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an $\mathcal{H}_{\infty}$ performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example.
Keywords:  Markov jump neural networks      persistent dwell-time switching rule      $\mathcal{H}_{\infty}$ state estimation      mean-square exponential stability  
Received:  26 November 2020      Revised:  21 December 2020      Accepted manuscript online:  04 January 2021
PACS:  02.30.Yy (Control theory)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61873002, 61703004, 61973199, 61573008, and 61973200).
Corresponding Authors:  Hao Shen     E-mail:  haoshen10@gmail.com

Cite this article: 

Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震) $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule 2021 Chin. Phys. B 30 060203

[1] Shi P, Zhang L X, Chadli M et al. 2016 IEEE Trans. Neural Netw. Learn. Syst. 27 903
[2] Arik S 2004 Neural Netw. 17 1027
[3] Cao J D and Wang J 2005 IEEE Trans. Circuits Syst. I, Reg. 52 417
[4] Liu Y, Xia J, Meng B et al. 2020 J. Franklin Inst. 357 10900
[5] Zhang L X, Zhu Y Z and Zheng W X 2015 IEEE Trans. Neural Netw. Learn. Syst. 26 2346
[6] Guo X Y and Li J M 2011 Chin. Phys. Lett. 28 120503
[7] Xu W, Yuan B and Ao P 2011 Chin. Phys. Lett. 28 050201
[8] Kong J T, Huang J, Gong J X et al. 2018 Acta Phys. Sin. 67 098901 (in Chinese)
[9] Ji L H and Liao X F 2012 Acta Phys. Sin. 61 150202 (in Chinese)
[10] Gao H Y, Hu A H, Shen Q W et al. 2019 Chin. Phys. B 28 060501
[11] Xu Z, Liu X Z, Chen Q W et al. 2020 Chin. Phys. B 29 050701
[12] Chen L P, Yin H, Yuan L G et al. 2020 Neural Netw. 125 174
[13] Chen L P, Wu R C, He Y G et al. 2015 Appl. Math. Comput. 257 274
[14] Bolzern P, Colaneri P and Nicolao G D 2015 Automatica 46 1081
[15] Tao J, Wu Z G, Su H Y et al. 2019 IEEE Trans. Cybern. 49 2504
[16] Yang X S, Feng Z G, Feng J W et al. 2017 Neural Netw. 85 157
[17] Zhou X, Cheng J, Cao J D et al. 2020 Neural Netw. 130 229
[18] Liu Y F, Shen B and Li Q 2019 Neurocomputing 357 261
[19] Cheng J, Park J H, Cao J D et al. 2020 IEEE Trans. Cybern. 50 1900
[20] Wang J, Xing M P, Sun Y H et al. 2019 J. Franklin Inst. 356 10155
[21] Wu Z G, Park J H, Su H Y et al. 2012 Nonlinear Anal. Real World Appl. 13 2423
[22] Shen H, Zhu Y Z and Zhang L X 2017 IEEE Trans. Neural Netw. Learn. Syst. 28 346
[23] Zhang L X, Zhuang S L and Shi P 2015 IEEE Trans. Automat. Control 60 2994
[24] Lian J, Liu J and Zhuang Y 2015 IEEE Trans. Circuits Syst. II, Exp. Briefs 62 801
[25] Wang Y, Hu X, Shi K, Song X and Shen H 2020 J. Franklin Inst. 357 10921
[26] Wu Z G, Su H Y and Chu J 2010 Neurocomputing 73 2247
[27] Hou N, Dong H L, Wang Z D et al. 2016 Neurocomputing 179 238
[28] Shen H, Xing M P, Huo S C et al. 2019 Fuzzy Sets and Sys. 356 113
[29] Zhang D, Yu L et al. 2012 Neural Netw. 35 103
[30] Liu Y R, Wang Z D, Liang J L et al. 2009 Neural Netw. 20 1102
[31] Zhang L X, Zhuang S L and Shi P 2015 Automatica 54 201
[32] Dong H L, Wang Z D, Daniel W C H et al. 2010 IEEE Trans. Fuzzy Syst. 18 712
[33] Liu Y R, Wang Z D and Liu X H 2006 Neural Netw. 19 667
[34] Hespanha J P 2004 IEEE Trans. Automat. Control 49 470
[1] THE MEAN-SQUARE EXPONENTIAL STABILITY AND INSTABILITY OF STOCHASTIC NONHOLONOMIC SYSTEMS
Shang Mei, Guo Yong-xin. Chin. Phys. B, 2001, 10(6): 480-485.
No Suggested Reading articles found!