Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030305    DOI: 10.1088/1674-1056/abd74d
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Quantum walk under coherence non-generating channels

Zishi Chen(陈子石) and Xueyuan Hu(胡雪元)†
1 School of Information Science and Engineering, Shandong University, Qingdao 266237, China
Abstract  We investigate the probability distribution of the quantum walk under coherence non-generating channels. We define a model called generalized classical walk with memory. Under certain conditions, generalized classical random walk with memory can degrade into classical random walk and classical random walk with memory. Based on its various spreading speed, the model may be a useful tool for building algorithms. Furthermore, the model may be useful for measuring the quantumness of quantum walk. The probability distributions of quantum walks are generalized classical random walks with memory under a class of coherence non-generating channels. Therefore, we can simulate classical random walk and classical random walk with memory by coherence non-generating channels. Also, we find that for another class of coherence non-generating channels, the probability distributions are influenced by the coherence in the initial state of the coin. Nevertheless, the influence degrades as the number of steps increases. Our results could be helpful to explore the relationship between coherence and quantum walk.
Keywords:  coherence      quantum walk      probability distribution  
Received:  13 October 2020      Revised:  19 November 2020      Accepted manuscript online:  30 December 2020
PACS:  03.67.-a (Quantum information)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774205) and the Young Scholars Program of Shandong University.
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Zishi Chen(陈子石) and Xueyuan Hu(胡雪元) Quantum walk under coherence non-generating channels 2021 Chin. Phys. B 30 030305

1 Hughes B D 1997 J. Stat. Phys. 87 961
2 Bulkley G 2003 J. Stat. Phys. 113 F668
3 Bovet P and Benhamou S J. Theor. Biol. 131 419
4 Gordon A H J. Clim. 4 589
5 Neigel J E and Avise J C Genetics 135 1209
6 Luo L and Yi M Chin. Phys. B 29 50503 (in Chinese)
7 Sun W G, Zhang J Y and Chen G R Chin. Phys. B 22 108904 (in Chinese)
8 Wang Y Q and Yang X Y Chin. Phys. B 22 10509 (in Chinese)
9 Li K P Chin. Phys. B 19 30519 (in Chinese)
10 Wang K, Zhou S Y, Zhang Y F, Pei W J and Liu Q Acta Phys. Sin. 60 118903 (in Chinese)
11 Jing X L, Xiang L, Hu M B and Shi Q 2014 Chin. Phys. Lett. 31 080504 (in Chinese)
12 Helfand E 1975 J. Chem. Phys. 62 999
14 Haus J W and Kehr K W 1978 Lecture Notes in Physics 84 346
15 Haus J W and Kehr K W Phys. Rep. 150 263
16 Rudnicki R and Wolf M 1999 J. Math. Phys. 40 3072
17 Davis B 1990 Probab. Theory Relat. Fields 84 203
18 Wu J F, Xu P and Zhu X M Phys. Lett. A 383 2389
19 Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
20 Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
21 Preiss P M, Ma R, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R and Greiner M Science 347 1229
22 Chakraborty S, Novo L, Di Giorgio S and Omar Y 2017 Phys. Rev. Lett. 119 220503
23 Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
24 Lu L H and Li Y Q 2019 Chin. Phys. Lett. 36 080305 (in Chinese)
25 Gan S, He X D, Liu B and Feng C D 2015 Chin. Phys. Lett. 32 080305 (in Chinese)
26 Li M, ZHANG Y S and Guo G C 2013 Chin. Phys. Lett. 30 020304 (in Chinese)
27 Feng Y Y, Shi R H, Shi J J and Guo Y Acta Phys. Sin. 68 120302 (in Chinese)
28 Liu Y M, Chen H W, Liu Z H, Xue X L and Zhu W N Acta Phys. Sin. 64 010301 (in Chinese)
29 Meng Y, Mei F, Chen G and Jia S T Chin. Phys. B 29 70501 (in Chinese)
30 Xue X L, Liu Z A and Chen H W Chin. Phys. B 26 10301 (in Chinese)
31 Mc G M Quantum Inf. Comput. 10 509
32 Rohde P P, Brennen G K and Gilchrist A 2013 Phys. Rev. A 87 052302
33 Li D, Mc G M, Gao F, Xu J and Wen Q Y 2016 Phys. Rev. A 93 042323
34 Kendon V and Tregenna B 2003 Phys. Rev. A 67 042315
35 Kendon V 2007 Mathematical. Structures in Comp. Sci. 17 1169
36 Chen J F and Ma Y H and Sun C P 2020 Front. Phys. 15 21602
37 Hu X Y 2016 Phys. Rev. A 94 012326
38 Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
39 Ryszard H, Pawe\l H, Micha\l H,Karol H 2009 Rev. Mod. Phys. 81 865
[1] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[2] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[3] State transfer on two-fold Cayley trees via quantum walks
Xi-Ling Xue(薛希玲) and Yue Ruan(阮越). Chin. Phys. B, 2021, 30(2): 020304.
[4] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[5] Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军). Chin. Phys. B, 2020, 29(9): 098704.
[6] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[7] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[8] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[9] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[10] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[11] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[12] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[13] Quantum intelligence on protein folding pathways
Wen-Wen Mao(毛雯雯), Li-Hua Lv(吕丽花), Yong-Yun Ji(季永运), You-Quan Li(李有泉). Chin. Phys. B, 2020, 29(1): 018702.
[14] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[15] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
No Suggested Reading articles found!