Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024211    DOI: 10.1088/1674-1056/abd6fc
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces

Yunping Qi(祁云平)1,† Baohe Zhang(张宝和)1, Jinghui Ding(丁京徽)1, Ting Zhang(张婷)1, Xiangxian Wang(王向贤)2, and Zao Yi(易早)3
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; 2 School of Science, Lanzhou University of Technology, Lanzhou 730050, China; 3 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621900, China
Abstract  Benefiting from the unprecedented superiority of coding metasurfaces at manipulating electromagnetic waves in the microwave band, in this paper, we use the Pancharatnam-Berry (PB) phase concept to propose a high-efficiency reflective-type coding metasurface that can arbitrarily manipulate the scattering pattern of terahertz waves and implement many novel functionalities. By optimizing the coding sequences, we demonstrate that the designed 1-, 2-, and 3-bit coding metasurfaces with specific coding sequences have the strong ability to control reflected terahertz waves. The two proposed 1-bit coding metasurfaces demonstrate that the reflected terahertz beam can be redirected and arbitrarily controlled. For normally incident x-and y-polarized waves, a 10 dB radar cross-section (RCS) reduction can be achieved from 2.1 THz to 5.2 THz using the designed 2-bit coding metasurface. Moreover, two kinds of orbital angular momentum (OAM) vortex beams with different moduli are generated by a coding metasurface using different coding sequences. Our research provides a new degree of freedom for the sophisticated manipulation of terahertz waves, and contributes to the development of metasurfaces towards practical applications.
Keywords:  coding metasurface      Pancharatnam-Berry phase      multiple beams      radar cross-section (RCS) reduction      orbital angular momentum  
Published:  29 January 2021
PACS:  42.68.Mj (Scattering, polarization)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.25.Ja (Polarization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61865008), Northwest Normal University Young Teachers' Scientific Research Capability Upgrading Program (Grant No. NWNU-LKQN2020-11), and the Scientific Research Fund of Sichuan Provincial Science and Technology Department, China (Grant No. 2020YJ0137).
Corresponding Authors:  Corresponding author. E-mail: qiyunping@nwnu.edu.cn   

Cite this article: 

Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早) Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces 2021 Chin. Phys. B 30 024211

1 Ferguson B and Zhang X C 2020 Nat. Mater. 1 26
2 Song H J and Nagatsuma T 2011 IEEE Transactions on Terahertz Science and Technology 1 256
3 Jepsen P U, Cooke D G and Koch M 2012 Laser & Photonics Reviews 6 418
4 Huang S L, Wang X, Chen Y F, Xu J and Mu B Z 2019 Opt. Express 27 337
5 Grady N K, Heyes J E and Chowdhury D R 2013 Science 340 1304
6 Nagatsuma T, Ducournau G and Renaud C C 2016 Nat. Photon. 10 371
7 Zhao R Q, Zheng Z, Dong G H, Lv T T and Zhang H 2019 Opt. Lett. 44 3482
8 Xu H X, Liu H, Ling X, Sun Y and Yuan F 2017 IEEE Transactions on Antennas and Propagation 65 7378
9 Zheng Q Q, Li Y, Zhang J, Ma H, Wang J, Pang Y, Han Y, Sui S, Shen Y and Chen Y 2017 Sci. Rep. 7 43543
10 Saifullah Y, Waqas A B, Yang G and Xu F 2019 Opt. Express 28 1139
11 Yu Y Z, Xiao F, He C, Jin R and Zhu W 2020 Opt. Express 28 11797
12 Yin L Z, Huang T J, Han F Y, Liu J Y and Liu P K 2019 Opt. Lett. 44 1556
13 Dai J Y, Zhao J, Cheng Q and Cui T J 2018 Light: Science & Applications 7 90
14 Xie X, Pu M P, Liu K P, Jin J J, Ma X L and Luo X G 2019 Photonics Research 7 586
15 Tao Z, Wan X, Pan B C and Cui T J 2017 Appl. Phys. Lett. 110 121901
16 Zhang Y, Xie B, Liu W, Cheng H, Chen S and Tian J 2019 Appl. Phys. Lett. 114 091905
17 Akbari M, Samadi F, Sebak A and Denidni T A 2019 IEEE Antennas and Propagation Magazine 61 40
18 Zhang L, Wan X, Liu S, Yin J Y, Zhang Q, Wu H T and Cui T J 2017 IEEE Trans. Antennas Propag 65 3374
19 Li Y J, Li Z W, Liu Y H, Kong Y and Huang L 2019 Optical Materials 98 109420
20 Qi Y P, Zhang B H, Liu C Q and Deng X Y 2020 IEEE Access 8 116675
21 Sajjad M, Kong X, Liu S, Ahmed A and Wang Q 2020 Phys. Lett. A 384 126567
22 Li S H and Li J S 2019 Chin. Phys. B 28 094210
23 Li H, Wang G, Liang J, Gao X, Hou H and Jia X 2017 IEEE Transactions on Antennas and Propagation 65 1452
24 Li K, Liu Y, Jia Y and Guo Y 2017 IEEE Transactions on Antennas & Propagation 65 4288
25 Sharma A, Gangwar D, Kumar Kanaujia B and Dwari S 2018 AEU-International Journal of Electronics and Communications 91 132
26 Li W, Zhang Y, Wu T, Cao J, Chen Z and Guan J 2019 Results in Physics 12 1964
27 Ma Q, Shi C B, Bai G D, Chen T Y, Noor Ahsan and Cui T J 2017 Advanced Optical Materials 5 1700548
28 Li J, Zhang Y T, Li J, Yan X, Liang, L J, Zhang Z, Huang J, Li J H, Yang Y and Yao J Q 2019 Nanoscale 11 5746
29 Ding G, Chen K, Luo X, Zhao J, Jiang T and Feng Y 2019 Phys. Rev. Applied 11 044043
30 Ding G W, Chen K, Jiang T, Sima B Y, Zhao J M and Feng Y J 2018 Opt. Express 26 20990
31 Qi Y P, Zhang Y, Liu C C, Zhang T, Zhang B H, Wang L Y, Deng X Y and Wang X X 2020 Nanomaterials 10 533
32 Xu K D, Li J, Zhang A and Chen Q 2020 Opt. Express 28 11482
33 Cen C, Zhang Y, Liang C, Chen X and Xiao S 2019 Phys. Lett. A 383 3030
34 Hu J G, Xie W Q, Chen J X, Zhou L M, Liu W, Li D M and Zhan Q W 2020 Opt. Express 28 22095
35 Hu J G, Yao E X, Xie W Q, Liu W, Li D M, Lu Y H and Zhan Q W 2019 Opt. Express 27 18642
36 Hu J G, Wu X H, Li H G, Yao E X, Xie W Q, Liu W, Lu Y H and Ming C G 2019 J. Opt. Soc. Am. B 36 697
37 Wang S, Wu P C, Su, V C, Lai Y C, Chen H C and Chen J W 2017 Nat. Commun. 8 187
38 Zeng J W, Huang F, Guclu C, Veysi M, Albooyeh M, Wickramasinghe H K and Capolino F 2018 ACS Photonics 5 390
39 Wan W, Gao J and Yang X 2017 Advanced Optical Materials 5 1700541
40 Beruete, Miguel and Irati J\'auregui-L\'opez2020 Advanced Optical Materials 8 3
41 Zundel L and Manjavacas A 2017 ACS Photonics 4 1831
42 Banerjee S, Amith C S, Kumar D, Damarla G and Chowdhury D R 2019 Opt. Commun. 453 124366
43 Wan M L, He J N, Song Y L and Zhou F Q 2015 Phys. Lett. A 379 1791
44 Qiu L, Xiao G, Kong X and Xiong C 2019 Opt. Express 27 21226
45 Guo T J and Christos A 2016 Opt. Lett. 41 5592
46 Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Daburro Z 2011 Science 334 333
47 Liu S, Cui T J, Zhang L, et al. 2016 Adv. Sci. 3 1600156
48 Zhang L, Liu S, Li L L and Cui T J 2017 ACS Appl. Mater. Interfaces 9 36447
49 Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Zheng L Xu Z and Zhang A X 2014 J. Phys. D: Appl. Phys. 47 425103
50 Li Y, Zhang J, Qu S, Wang J, Chen H and Xu Z
51 Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
52 Wang L, Liu S, Kong X, Wen Y and Liu X 2019 Electron. Lett. 55 1168
53 Chen P, Ge S J, Duan W, Wei B Y, Cui G X and Hu W 2017 ACS Photonics 4 1333
[1] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[2] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[3] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[4] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[5] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(4): 040305.
[6] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[7] Comparison of three kinds of polarized Bessel vortex beams propagating through uniaxial anisotropic media
Jia-Wei Liu(刘佳伟), Hai-Ying Li(李海英), Wei Ding(丁炜), Lu Bai(白璐), Zhen-Sen Wu(吴振森), Zheng-Jun Li(李正军). Chin. Phys. B, 2019, 28(9): 094214.
[8] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[9] Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface
Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇). Chin. Phys. B, 2019, 28(3): 034204.
[10] Orbital angular momentum density and spiral spectra of Lorentz-Gauss vortex beams passing through a single slit
Zhi-Yue Ji(季志跃), Guo-Quan Zhou(周国泉). Chin. Phys. B, 2017, 26(9): 094202.
[11] Realization of quantum permutation algorithm in high dimensional Hilbert space
Dong-Xu Chen(陈东旭), Rui-Feng Liu(刘瑞丰), Pei Zhang(张沛), Yun-Long Wang(王云龙), Hong-Rong Li(李宏荣), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2017, 26(6): 060305.
[12] A new method of calculating the orbital angular momentum spectra of Laguerre-Gaussian beams in channels with atmospheric turbulence
Xiao-zhou Cui(崔小舟), Xiao-li Yin(尹霄丽), Huan Chang(常欢), Zhi-chao Zhang(张志超), Yong-jun Wang(王拥军), Guo-hua Wu(吴国华). Chin. Phys. B, 2017, 26(11): 114207.
[13] A method for generating double-ring-shaped vector beams
Huan Chen(陈欢), Xiao-Hui Ling(凌晓辉), Zhi-Hong Chen(陈知红), Qian-Guang Li(李钱光), Hao Lv(吕昊), Hua-Qing Yu(余华清), Xu-Nong Yi(易煦农). Chin. Phys. B, 2016, 25(7): 074201.
[14] Microscale vortex laser with controlled topological charge
Xing-Yuan Wang(王兴远), Hua-Zhou Chen(陈华洲), Ying Li(黎颖), Bo Li(李波), Ren-Min Ma(马仁敏). Chin. Phys. B, 2016, 25(12): 124211.
[15] Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system
Li Zou(邹丽), Le Wang(王乐), Sheng-Mei Zhao(赵生妹), Han-Wu Chen(陈汉武). Chin. Phys. B, 2016, 25(11): 114215.
No Suggested Reading articles found!