Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024211    DOI: 10.1088/1674-1056/abd6fc
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces

Yunping Qi(祁云平)1,† Baohe Zhang(张宝和)1, Jinghui Ding(丁京徽)1, Ting Zhang(张婷)1, Xiangxian Wang(王向贤)2, and Zao Yi(易早)3
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; 2 School of Science, Lanzhou University of Technology, Lanzhou 730050, China; 3 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621900, China
Abstract  Benefiting from the unprecedented superiority of coding metasurfaces at manipulating electromagnetic waves in the microwave band, in this paper, we use the Pancharatnam-Berry (PB) phase concept to propose a high-efficiency reflective-type coding metasurface that can arbitrarily manipulate the scattering pattern of terahertz waves and implement many novel functionalities. By optimizing the coding sequences, we demonstrate that the designed 1-, 2-, and 3-bit coding metasurfaces with specific coding sequences have the strong ability to control reflected terahertz waves. The two proposed 1-bit coding metasurfaces demonstrate that the reflected terahertz beam can be redirected and arbitrarily controlled. For normally incident x-and y-polarized waves, a 10 dB radar cross-section (RCS) reduction can be achieved from 2.1 THz to 5.2 THz using the designed 2-bit coding metasurface. Moreover, two kinds of orbital angular momentum (OAM) vortex beams with different moduli are generated by a coding metasurface using different coding sequences. Our research provides a new degree of freedom for the sophisticated manipulation of terahertz waves, and contributes to the development of metasurfaces towards practical applications.
Keywords:  coding metasurface      Pancharatnam-Berry phase      multiple beams      radar cross-section (RCS) reduction      orbital angular momentum  
Received:  16 October 2020      Revised:  17 December 2020      Accepted manuscript online:  28 December 2020
PACS:  42.68.Mj (Scattering, polarization)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.25.Ja (Polarization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61865008), Northwest Normal University Young Teachers' Scientific Research Capability Upgrading Program (Grant No. NWNU-LKQN2020-11), and the Scientific Research Fund of Sichuan Provincial Science and Technology Department, China (Grant No. 2020YJ0137).
Corresponding Authors:  Corresponding author. E-mail: qiyunping@nwnu.edu.cn   

Cite this article: 

Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早) Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces 2021 Chin. Phys. B 30 024211

1 Ferguson B and Zhang X C 2020 Nat. Mater. 1 26
2 Song H J and Nagatsuma T 2011 IEEE Transactions on Terahertz Science and Technology 1 256
3 Jepsen P U, Cooke D G and Koch M 2012 Laser & Photonics Reviews 6 418
4 Huang S L, Wang X, Chen Y F, Xu J and Mu B Z 2019 Opt. Express 27 337
5 Grady N K, Heyes J E and Chowdhury D R 2013 Science 340 1304
6 Nagatsuma T, Ducournau G and Renaud C C 2016 Nat. Photon. 10 371
7 Zhao R Q, Zheng Z, Dong G H, Lv T T and Zhang H 2019 Opt. Lett. 44 3482
8 Xu H X, Liu H, Ling X, Sun Y and Yuan F 2017 IEEE Transactions on Antennas and Propagation 65 7378
9 Zheng Q Q, Li Y, Zhang J, Ma H, Wang J, Pang Y, Han Y, Sui S, Shen Y and Chen Y 2017 Sci. Rep. 7 43543
10 Saifullah Y, Waqas A B, Yang G and Xu F 2019 Opt. Express 28 1139
11 Yu Y Z, Xiao F, He C, Jin R and Zhu W 2020 Opt. Express 28 11797
12 Yin L Z, Huang T J, Han F Y, Liu J Y and Liu P K 2019 Opt. Lett. 44 1556
13 Dai J Y, Zhao J, Cheng Q and Cui T J 2018 Light: Science & Applications 7 90
14 Xie X, Pu M P, Liu K P, Jin J J, Ma X L and Luo X G 2019 Photonics Research 7 586
15 Tao Z, Wan X, Pan B C and Cui T J 2017 Appl. Phys. Lett. 110 121901
16 Zhang Y, Xie B, Liu W, Cheng H, Chen S and Tian J 2019 Appl. Phys. Lett. 114 091905
17 Akbari M, Samadi F, Sebak A and Denidni T A 2019 IEEE Antennas and Propagation Magazine 61 40
18 Zhang L, Wan X, Liu S, Yin J Y, Zhang Q, Wu H T and Cui T J 2017 IEEE Trans. Antennas Propag 65 3374
19 Li Y J, Li Z W, Liu Y H, Kong Y and Huang L 2019 Optical Materials 98 109420
20 Qi Y P, Zhang B H, Liu C Q and Deng X Y 2020 IEEE Access 8 116675
21 Sajjad M, Kong X, Liu S, Ahmed A and Wang Q 2020 Phys. Lett. A 384 126567
22 Li S H and Li J S 2019 Chin. Phys. B 28 094210
23 Li H, Wang G, Liang J, Gao X, Hou H and Jia X 2017 IEEE Transactions on Antennas and Propagation 65 1452
24 Li K, Liu Y, Jia Y and Guo Y 2017 IEEE Transactions on Antennas & Propagation 65 4288
25 Sharma A, Gangwar D, Kumar Kanaujia B and Dwari S 2018 AEU-International Journal of Electronics and Communications 91 132
26 Li W, Zhang Y, Wu T, Cao J, Chen Z and Guan J 2019 Results in Physics 12 1964
27 Ma Q, Shi C B, Bai G D, Chen T Y, Noor Ahsan and Cui T J 2017 Advanced Optical Materials 5 1700548
28 Li J, Zhang Y T, Li J, Yan X, Liang, L J, Zhang Z, Huang J, Li J H, Yang Y and Yao J Q 2019 Nanoscale 11 5746
29 Ding G, Chen K, Luo X, Zhao J, Jiang T and Feng Y 2019 Phys. Rev. Applied 11 044043
30 Ding G W, Chen K, Jiang T, Sima B Y, Zhao J M and Feng Y J 2018 Opt. Express 26 20990
31 Qi Y P, Zhang Y, Liu C C, Zhang T, Zhang B H, Wang L Y, Deng X Y and Wang X X 2020 Nanomaterials 10 533
32 Xu K D, Li J, Zhang A and Chen Q 2020 Opt. Express 28 11482
33 Cen C, Zhang Y, Liang C, Chen X and Xiao S 2019 Phys. Lett. A 383 3030
34 Hu J G, Xie W Q, Chen J X, Zhou L M, Liu W, Li D M and Zhan Q W 2020 Opt. Express 28 22095
35 Hu J G, Yao E X, Xie W Q, Liu W, Li D M, Lu Y H and Zhan Q W 2019 Opt. Express 27 18642
36 Hu J G, Wu X H, Li H G, Yao E X, Xie W Q, Liu W, Lu Y H and Ming C G 2019 J. Opt. Soc. Am. B 36 697
37 Wang S, Wu P C, Su, V C, Lai Y C, Chen H C and Chen J W 2017 Nat. Commun. 8 187
38 Zeng J W, Huang F, Guclu C, Veysi M, Albooyeh M, Wickramasinghe H K and Capolino F 2018 ACS Photonics 5 390
39 Wan W, Gao J and Yang X 2017 Advanced Optical Materials 5 1700541
40 Beruete, Miguel and Irati J\'auregui-L\'opez2020 Advanced Optical Materials 8 3
41 Zundel L and Manjavacas A 2017 ACS Photonics 4 1831
42 Banerjee S, Amith C S, Kumar D, Damarla G and Chowdhury D R 2019 Opt. Commun. 453 124366
43 Wan M L, He J N, Song Y L and Zhou F Q 2015 Phys. Lett. A 379 1791
44 Qiu L, Xiao G, Kong X and Xiong C 2019 Opt. Express 27 21226
45 Guo T J and Christos A 2016 Opt. Lett. 41 5592
46 Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Daburro Z 2011 Science 334 333
47 Liu S, Cui T J, Zhang L, et al. 2016 Adv. Sci. 3 1600156
48 Zhang L, Liu S, Li L L and Cui T J 2017 ACS Appl. Mater. Interfaces 9 36447
49 Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Zheng L Xu Z and Zhang A X 2014 J. Phys. D: Appl. Phys. 47 425103
50 Li Y, Zhang J, Qu S, Wang J, Chen H and Xu Z
51 Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
52 Wang L, Liu S, Kong X, Wen Y and Liu X 2019 Electron. Lett. 55 1168
53 Chen P, Ge S J, Duan W, Wei B Y, Cui G X and Hu W 2017 ACS Photonics 4 1333
[1] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[2] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[3] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[4] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[5] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[6] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[7] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[8] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[9] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[10] Wideband radar cross section reduction based on absorptive coding metasurface with compound stealth mechanism
Xinmi Yang(杨歆汨), Changrong Liu(刘昌荣), Bo Hou(侯波), and Xiaoyang Zhou(周小阳). Chin. Phys. B, 2021, 30(10): 104102.
[11] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[12] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[13] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[14] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[15] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(4): 040305.
No Suggested Reading articles found!