Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036104    DOI: 10.1088/1674-1056/abd6f8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness

Jian Li(李健)1, Bo-kai Zhang(张博凯)2,†, and Yu-Shan Li(李玉山)1,
1 Department of Physics and Electronic Engineering, Heze University, Heze 274015, China; 2 Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  Colloidal polymers with tunable chain stiffness have been successfully assembled in experiments recently. Similar to molecular polymers, chain stiffness is an important feature which can distinctly affect the dynamical behaviors of colloidal polymers. Hence, we model colloidal polymers with controlled chain stiffness and study the effect of chain stiffness on glassy behaviors. For stiff chains, there are long-ranged periodic intrachain correlations besides two incompatible local length scales, i.e., monomer size and bond length. The mean square displacement of monomers exhibits sub-diffusion at intermediate time/length scale and the sub-diffusive exponent increases with chain stiffness. The data of localization length of stiff polymers versus rescaled volume fraction for different monomer sizes can gather close to an exponential curve and decay slower than those of flexible polymers. The increase of chain stiffness linearly increases the activation energy of the colloidal-polymer system and thus makes the colloidal polymers vitrify at lower volume fraction. Static and dynamic equivalences between stiff colloidal polymers of different monomer sizes have been checked.
Keywords:  glassy dynamics      colloidal polymers      molecular dynamics      mean square displacement  
Received:  11 November 2020      Revised:  20 December 2020      Accepted manuscript online:  28 December 2020
PACS:  61.43.Fs (Glasses)  
  64.70.kj (Glasses)  
  64.70.km (Polymers)  
  64.70.pj (Polymers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804085 and 11847115) and the Doctoral Foundation of Heze University (Grant No. XY18BS13).
Corresponding Authors:  Corresponding author. E-mail: bkzhang@zstu.edu.cn Corresponding author. E-mail: lysh507@163.com   

Cite this article: 

Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山) Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness 2021 Chin. Phys. B 30 036104

1 Michielettoa D and Turnerb M S 2016 Proc. Natl. Acad. Sci. USA 113 5195
2 Hsu H P and Kremer K 2019 J. Chem. Phys. 150 091101
3 Zirdehi E M andVarnik F 2019 J. Chem. Phys. 150 024903
4 Zhang B K, Li H S, Li J, Chen K, Tian W D and Ma Y Q 2016 Soft Matter 12 8104
5 Li J and Zhang B K 2019 Chin. Phys. B 28 126101
6 Baschnagel J and Varnik F 2005 J. Phys.: Condens. Matter 17 R851
7 Barrat J L, Baschnagel J and Lyulin A 2010 Soft Matter 6 3430
8 Wang C, Chen Y C, Zhang S, Qi H K and Luo M B 2020 Chin. Phys. B 29 108201
9 Chen K and Schweizer K S 2007 Phys. Rev. Lett. 98 167802
10 Chen K and Schweizer K S 2009 Phys. Rev. Lett. 102 038301
11 Wan W B, Lv H H, Merlitz H and Wu C X 2016 Chin. Phys. B 25 106101
12 Paul W and Smith G D 2004 Rep. Prog. Phys. 67 1117
13 Bennemann C, Baschnagel J, Paul W and Binder K 1999 Comput. Theor. Polym. Sci. 9 217
14 Brodeck M, Alvarez F, Arbe A, Juranyi F, Unruh T, Holderer O, Colmenero J and Richter D 2009 J. Chem. Phys. 130 094908
15 Bernabei M, Moreno A J and Colmenero J 2008 Phys. Rev. Lett. 101 255701
16 Bernabei M, Moreno A J and Colmenero J 2009 J. Chem. Phys. 131 204502
17 Bulacu M and Giessen E V D 2007 Phys. Rev. E 76 011807
18 Bulacu M and Giessen E V D 2005 J. Chem. Phys. 123 114901
19 Bernabei M, Moreno A J, Zaccarelli E, Sciortino F and Colmenero J 2011 J. Chem. Phys. 134 024523
20 Bernabei M, Moreno A J and Colmenero J 2011 J. Phys.: Condens. Matter 23 234119
21 Hill L J, Pinna N, Char K and Pyun J 2015 Prog. Polym. Sci. 40 85
22 Gao B, Arya G and Tao A R 2012 Nat. Nanotechnol. 7 433
23 Yang M, Chen G, Zhao Y, Silber G, Wang Y, Xing S, Han Y and Chen H 2010 Phys. Chem. Chem. Phys. 12 11850
24 Zhao Y, Xu L, Marzan L M L, Kuang H, Ma W, Garcia A A, Abajo F J G D, Kotov N A, Wang L and Xu C 2013 J. Phys. Chem. Lett. 4 641
25 Bannwarth M B, Utech S, Ebert S, Weitz D A, Crespy D and Landfester K 2015 ACS Nano 9 2720
26 Guo D, Li C, Wang Y, Li Y N and Song Y L 2017 Angew. Chem. 129 15550
27 Vutukuri H R, Demir\"ors A F, Peng B, Oostrum P D J V, Imhof A and Blaaderen A V 2012 Angew. Chem. Int. Ed. 51 11249
28 Byrom J, Han P, Savory M and Biswal S L 2014 Langmuir 30 9045
29 Stuij S, Doorn J M V, Kodger T, Sprakel J, Coulais C and Schall P 2019 Phys. Rev. Research 1 023033
30 Li J, Zhang B K, Li H S, Chen K, Tian W D and Tong P Q 2016 J. Chem. Phys. 144 204509
31 Gleim T, Kob W and Binder K 1998 Phys. Rev. Lett. 81 4404
32 Tokuyama M, Yamazaki H and Terada Y 2003 Phys. Rev. E 67 062403
33 Berthier L, Biroli G, Bouchaud J P, Kob W, Miyazaki K and Reichman D R 2007 J. Chem. Phys. 126 184503
34 Hofling F, Munk T, Frey E and Franosch T 2008 J. Chem. Phys. 128 164517
35 Iacovella C R, Horsch M A and Glotzer S C 2008 J. Chem. Phys. 129 044902
36 Kremer K and Grest G S 1990 J. Chem. Phys. 92 5057
37 Paul W 2002 Chem. Phys. 284 59
38 Aichele M and Baschnagel J 2001 Eur. Phys. J. E 5 245
39 Bennemann C, Paul W, Binder K and D\"unweg B 1998 Phys. Rev. E 57 843
40 Chen J X, Zhu J X, Ma Y Q and Cao J S 2014 EPL 106 18003
41 Li J, Zhang B K 2020 EPL 130 56001
42 There is no unique definition of the two ends of caging regime in the MSD curve. We mark the two ends by searching the points at which the slope of the log-log plot of the MSD curve reaches the average of the slopes of the caging regime and the sub-diffusive regime.
43 Gotze W and Sjogren L 1992 Rep. Prog. Phys. 55 241
44 Fuchs M, G\"otze W and Mayr M R 1998 Phys. Rev. E 58 3384
45 Kim J, Kim C and Sung B J 2013 Phys. Rev. Lett. 110 047801
46 Schweizer K S and Saltzman E J 2003 J. Chem. Phys. 119 1181
47 Angell C A 1995 Science 267 1924
48 Gotze W 1999 J. Phys.: Condens. Matter 11 A1
[1] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[2] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[3] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[4] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[5] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[6] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[7] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[8] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[9] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[10] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[11] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[12] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[13] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[14] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[15] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
No Suggested Reading articles found!