Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064214    DOI: 10.1088/1674-1056/abd697
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials

Huawei Yao(姚华伟)1, Xiaoxia Wang(王晓霞)1, Huaiyuan Yin(殷怀远)1, Yuanlin Jia(贾渊琳)1, Yong Gao(高勇)2, Junqiao Wang(王俊俏)1, and Chunzhen Fan(范春珍)1,†
1 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China;
2 Department of Physics, Shanghai Polytechnic University, Shanghai 201209, China
Abstract  A tunable selective emitter with hollow zigzag SiO2 metamaterials, which are deposited on Si3N4 and Ag film, is proposed and numerically investigated for achieving excellent radiative cooling effects. The average emissivity reaches a high value of 98.7% in the atmospheric window and possesses a high reflectivity of 92.0% in the solar spectrum. To reveal the enhanced absorptivity, the confined electric field distribution is investigated, and it can be well explained by moth eye effects. Moreover, tunable emissivity can also be initiated with different incident angles and it stays above 83% when the incident angle is less than 80°, embodying the excellent cooling performance in the atmospheric transparency window. Its net cooling power achieves 100.6 W·m-2, with a temperature drop of 13°, and the cooling behavior can persist in the presence of non-radiative heat exchange conditions. Therefore, high and tunable selective emitters based on our designed structure could provide a new route to realizing high-performance radiative cooling. This work is also of great significance for saving energy and environmental protection.
Keywords:  daytime radiative cooling      hollow zigzag metamaterials      net cooling power      emissivity  
Received:  20 November 2020      Revised:  11 December 2020      Accepted manuscript online:  24 December 2020
PACS:  42.79.Hp (Optical processors, correlators, and modulators)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  44.40.+a (Thermal radiation)  
Fund: Project supported by the Natural Science Foundation of Henan Educational Committee (Grant No. 21A140026).
Corresponding Authors:  Chunzhen Fan     E-mail:  chunzhen@zzu.edu.cn

Cite this article: 

Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍) Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials 2021 Chin. Phys. B 30 064214

[1] Hossain M M and Gu M 2016 Adv. Sci. 3 1500360
[2] Zhao B, Hu M, Ao X, Chen N and Pei G 2019 Appl. Energ. 236 489
[3] Chen S H, Wang X X, Nie G D, Liu Q, Sui j X, Song C, Zhu J W, Fu j, Zhang j C, Yan X and Long Y Z 2019 Chin. Phys. B 28 064401
[4] Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V and Troise G 1975 Sol. Energy 17 83
[5] Granqvist C G and Hjortsberg A 1980 Appl. Phys. Lett. 36 139
[6] Granqvist C G 1981 Appl. Opt. 20 2606
[7] Granqvist C G and Hjortsberg A 1981 J. Appl. Phys. 52 4205
[8] Suryawanshi C N and Lin C T 2009 ACS. Appl. Mater. Inter. 1 1334
[9] Hossain M M, Jia B and Gu M 2015 Adv. Opt. Mater. 3 1047
[10] Hannah K and Andrej L 2018 J. Opt. 20 084002
[11] Ko B, Lee D, Badloe T and Rho J 2018 Energies 12 89
[12] Bao H, Yan C, Wang B, Fang X, Zhao C Y and Ruan X 2017 Sol. Energy. Mater. Sol. Cells 168 78
[13] Suichi T, Ishikawa A, Hayashi Y and Tsuruta K 2018 AIP. Advances 8 055124
[14] Wu J Y, Gong Y Z, Huang P R, Ma G J and Dai Q F 2017 Chin. Phys. B 26 104201
[15] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[16] Wang J Q, Fan C Z, He J N, Ding P, Liang E J and Xue Q Z 2013 Opt. Express 21 2236
[17] Fan C Z, Ren P W, Jia W, Jia Y L and Wang J Q 2019 Superlattice. Microst. 136 106295
[18] Ren P W, Jia Y L, Jia W and Fan C Z 2019 J. Opt. 21 105101
[19] Zhao D, Aili A, Zhai Y, Lu J, Kidd D, Tan G, Yin X and Yang R 2019 Joule. 3 111
[20] Cheng Z M, Wang F Q, Gony D Y, Liang H X and Shuai Y 2020 Sol. Energy. Mater. Sol. Cells 213 110563
[21] Rephaeli E, Raman A and Fan S 2013 Nano Lett. 13 1457
[22] Raman A P, Anoma M A, Zhu L, Rephaeli E and Fan S 2014 Nature 515 540
[23] Chen Z, Zhu L X, Raman A and Fan S H 2016 Nat. Commun. 7 13729
[24] Kecebas M A, Menguc M P, Kosar A and Sendur K 2017 J. Quant. Spectrosc. Radiat. Transf. 198 179
[25] Jeong S Y, Tso C Y, Ha J, Wong Y M, Chao C Y H, Huang B and Qiu H 2020 Renew. Energ. 146 44
[26] Kou J, Jurado Z, Chen Z, Fan S and Minnich A J 2017 ACS. Photonics. 4 626
[27] Suichi T, Ishikawa A, Hayashi Y and Tsuruta K 2018 AIP. Advances 8 055124
[28] Yang P, Chen C and Zhang Z M 2018 Sol. Energy 169 316
[29] Wu D, Liu C, Xu Z, Liu Y, Yu Z, Yu L, Chen L, Li R, Ma R and Ye H 2018 Mater. Design 139 104
[30] Zhu L, Raman A. Wang K X, Anoma M A and Fan S 2014 Optica 1 32
[31] Jeong S Y, Tso C Y, Wong Y M, Chao C Y H and Huang B 2020 Sol. Energy. Mater. Sol. Cells 206 110296
[32] Gentle A R and Smith G B 2010 Nano. Lett. 10 373
[33] Huang Z and Ruan X 2017 Int. J. Heat. Mass. Tran. 104 890
[34] Zhai Y, Ma Y G, David S N, Zhao D L, Lou R N, Tan G, Yang R G and Yin X B 2017 Science 355 1062
[35] Fu Y, Yang J, Su Y S, Du W and Ma Y G 2019 Sol. Energy. Mater. Sol. Cells 191 50
[36] Chae D, Kim M, Jung P H, Son S, Seo J, Liu Y, Lee B J and Lee H 2020 ACS. Appl. Mater. Inter. 12 8073
[37] Kischkat J, Peters S, Gruska B, Semtsiv M, Chashnikova M, Klinkmüller M, Fedosenko M, Machulik S, Aleksandrova A, Monastyrskyi G, Flores Y and Masselink T 2012 Appl. Optics 51 6789
[38] Palik E 1998 Handbook of Optical Constants of Solids (Vol.1) (New York: Harcourt Brace Jovanovich) pp.749-763
[39] Cunha N F, AL-Rjoub A, Rebouta L, Vieira L G and Lanceros-Mendez 2020 Thin Solid Films 694 137736
[40] Fukasawa T, Kubota K, Shindo H and Horiike Y 1994 Jpn. J. Appl. Phys. 33 7042
[41] Kumar M D, Kim H and Kim J 2015 Sol. Energy 117 180
[42] Wu J Y, Gong Y Z, Huang P R, Ma G J and Dai Q F 2017 Chin. Phys. B 26 213
[43] Li N, Wang J, Liu D, Huang X, Xu Z, Zhang C, Zhang Z and Zhong M 2019 Sol. Energy. Mater. Sol. Cells 194 103
[44] Air mass 1.0 spectra, American Society for Testing and Materials (ASTM) http://rredc.nrel.gov/solar/spectra/am1.5/(Available from)
[45] Lou S, Guo X, Fan T and Zhang D 2012 Energ. Environ. Sci. 5 9195
[46] Kong A, Cai B, Shi P and Yuan X C 2019 Opt. Express 27 30102
[47] Fan C Z, Wang J Q, Zhu S M, He J N, Ding P and Liang E J 2013 J. Opt. 15 055103
[48] Fan C Z, Wang J Q, Cheng Y G, Ding P, Liang E J and Huang J P 2013 Chin. Phys. B 22 084703
[49] Ono M, Chen K, Li W and Fan S H 2018 Opt. Express 26 A777
[1] Infrared cooling properties of cordierite
Si-Heng Chen(陈思衡), Xiao-Xiong Wang(王晓雄), Guang-Di Nie(乜广弟), Qi Liu(刘奇), Jin-Xia Sui(隋金霞), Chao Song(宋超), Jian-Wei Zhu(朱建伟), Jie Fu(付洁), Jun-Cheng Zhang(张君诚), Xu Yan(闫旭), Yun-Ze Long(龙云泽). Chin. Phys. B, 2019, 28(6): 064401.
[2] Apparent directional spectral emissivity determination of semitransparent materials
Chun-Yang Niu(牛春洋), Hong Qi(齐宏), Ya-Tao Ren(任亚涛), Li-Ming Ruan(阮立明). Chin. Phys. B, 2016, 25(4): 047801.
[3] A thin radar-infrared stealth-compatible structure:Design, fabrication, and characterization
Tian Hao, Liu Hai-Tao, Cheng Hai-Feng. Chin. Phys. B, 2014, 23(2): 025201.
[4] Infrared emissivities of Mn, Co co-doped ZnO powders
Yao Yin-Hua, Cao Quan-Xi. Chin. Phys. B, 2012, 21(12): 124205.
[5] Effect of fabrication conditions on the properties of indium tin oxide powders
Xie Wei. Chin. Phys. B, 2008, 17(7): 2683-2688.
[6] A microwave emissivity model of sea surface under wave breaking
Wei En-Bo, Ge Yong. Chin. Phys. B, 2005, 14(6): 1259-1264.
[7] Magnetic extraction of energy from black hole accretion disc and its application to astrophysics
Ye Yong-Chun, Wang Ding-Xiong, Gong Xiao-Long. Chin. Phys. B, 2005, 14(2): 439-447.
[8] The measuring of spectral emissivity of object using chaotic optimal algorithm
Yang Chun-Ling, Wang Yu-Ye, Zhao Dong-Yang, Zhao Guo-Liang. Chin. Phys. B, 2005, 14(10): 2041-2045.
No Suggested Reading articles found!