Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050701    DOI: 10.1088/1674-1056/abd691
GENERAL Prev   Next  

Phase transition of shocked water up to 6 GPa: Transmittance investigation

Lang Wu(吴浪)1,2, Yue-Hong Ren(任月虹)1,2, Wen-Qiang Liao(廖文强)1,2, Xi-Chen Huang(黄曦晨)1,2, Fu-Sheng Liu(刘福生)1,2, Ming-Jian Zhang(张明建)1,2, and Yan-Yun Sun(孙燕云)1,2,†
1 Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
2 Sichuan Provincial Key Laboratory(for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
Abstract  The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system. Based on the light scattering theory and phase transformation kinetics, the phase transition mechanism of the water under multiple shocks is discussed. The experimental data indicate that the evolution of the transmittance of the shocked water can be broadly divided into three stages: relaxation stage, decline stage, and recovery stage. In the early stage of the phase transition, the new phase particles began to form around the quartz/window interface. It should be mentioned that the water/ice phase boundary seems to move toward the liquid region in one experiment of this work. Due to the new phase core being much smaller than the wavelength of the incident light, the transmittance of the sample within the relaxation stage remains steady. The decline stage can be divided into the rapid descent stage and the slow descent stage in this work, which is considered as the different growth rates of the new phase particle under different shock loadings. The recovery stage is attributed to the emergence of the new phase particles which are bigger than the critical value. However, the influence of the size growth and the population growth of the new phase particles on the transmittance restrict each other, which may be responsible for the phenomenon that the transmittance curve does not return to the initial level.
Keywords:  phase transition      shocked water      multiple compresses      transmittance      scattering  
Received:  05 September 2020      Revised:  04 December 2020      Accepted manuscript online:  24 December 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  64.60.Bd (General theory of phase transitions)  
  42.25.Fx (Diffraction and scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604271).
Corresponding Authors:  Yan-Yun Sun     E-mail:

Cite this article: 

Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云) Phase transition of shocked water up to 6 GPa: Transmittance investigation 2021 Chin. Phys. B 30 050701

[1] Ehrenfreund P, Fraser H J, Blum J, Cartwright J H E, Garciaruiz J M, Hadamcik E, Levasseurregourd A C, PriceS D, Prodi F and Sarkissian A 2003 Planet Space Sci. 51 473
[2] Falenty A, Hansen T C and Kuhs W F 2014 Nature 516 231
[3] Whalley E, Davidson D W and Heath J B R 1966 J. Chem. Phys. 45 3976
[4] Lebel L S, Brousseau P, Erhardt L and Andrews W S 2014 Combust Flame. 161 1038
[5] Lee K K M, Benedetti L R, Jeanloz R, Celliers P M, Eggert J H, Hicks D G, Moon S J, Mackinon A, Silva L B D, Bradley D K, Unites W, Collins G W, Henry E, Koenig M, BenuzzimounaixA, Pasley J and Neely D 2006 J. Chem. Phys. 125 014701
[6] Smyth J R, Holl C M, Frost D J and Jacobsen S D 2004 Phys. Earth Planet. Inter. 143 271
[7] Tulk C A, Benmore C J, Urquidi J, Klug D D, Neuefeind J, Tomberli B and Egelstaff P A 2002 Science 297 1320
[8] Poole P H, Sciortino F, Essmann U and Stanley H E 1992 Nature 360 324
[9] Palmer J C, Martelli F, Liu Y, Car R, Panagiotopoulos A Z and Debenedetti P G 2014 Nature 510 385
[10] Nellis W J 2006 Rep. Prog. Phys. 69 1479
[11] Kadau K, Germann T C, Lomdahl P S and Holian B L 2002 Science 296 1681
[12] Christian J W and Otte H M 2003 Mater. Today 6 53
[13] Dolan D H and Gupta Y M 2004 AIP Conference Proceedings 706 167
[14] Walsh J M and Rice M H 1957 J. Chem. Phys. 26 815
[15] Bastea M, Bastea S, Reaugh J E and Reisman D B 2007 Phys. Rev. B 75 172104
[16] Dolan D H and Gupta Y M 2004 J. Chem. Phys. 121 9050
[17] Dolan D H and Gupta Y M 2003 Chem. Phys. Lett. 374 608
[18] Ren Y H, Wu L, Fan Z N, Wang Y G, Liu F S, Chen J Y, Zhang M J and Sun Y Y 2019 Europhys. Lett. 128 20003
[19] Dolan D H, Knudson M D, Hall C A and Deeney C 2007 Nat. Phys. 3 339
[20] Apetz R and Bruggen M P B V 2003 J. Am. Ceram. Soc. 86 480
[21] Chau R, Mitchell A C, Minich R W and Nellis W J 2001 J. Chem. Phys. 114 1361
[22] Gaedner A S and Sharp M J 2010 J. Geophys. Res-Earth. 115 F1
[23] Batani D, Morelli A, Tomasini M, Mounaix A B, Cathala B 2002 Phys. Rev. Lett. 88 235502
[24] Mishima O, Saito S and Ohmine I 2002 Nature 416 409
[25] Du Q, Freysz E and Shen Y R 1994 Phys. Rev. Lett. 72 238
[26] Ostroverkhov V, Waychunas G A and Shen Y R 2005 Phys. Rev. Lett. 94 046102
[27] Wagner W and Pruss A 2002 J. Phys. Chem. Ref. Data 31 387
[28] Li Y H, Liu F S, Cheng X L, Zhang M J and Xue X D 2011 Acta. Phys. Sin. 60 126202 (in Chinese)
[29] Walsh J M and Christian R H 1955 Phys. Rev. 97 1544
[30] Li Y H 2011 Research on Crystallization of Water Induced by Fused Quartz under Shock Compression, Ph. D Dissertation (Chengdu: Southwest Jiao Tong University) (in Chinese)
[31] Siebert K J 2000 J. Am. Soc. Brew. Chem. 58 97
[32] Fu Q and Sun W 2001 Appl. Opt. 40 1354
[33] Guan Z D, Zhang Z T, and Jiao J S 1992 Physical Properties of Inorganic Materials (Beijing: Tsinghua University Press) pp. 182-186 (in Chinese)
[34] Gleason A E, Bolme C A, Galtier E, Lee H J and Mao W L 2017 Phys. Rev. Lett. 119 025701
[35] Barber P W 1984 J. Colloid. Interf. Sci. 98 290
[36] Myint P C and Belof J L 2018 J. Phys.: Condens. Matter 30 233002
[37] Huber E and Frost M 1998 J. Water. Supply. Res. T. 47 87
[38] Wagner W and Pruss A 1994 J. Phys. Chem. Ref. Data 23 515
[39] Pistorius C W F T, Rapoport E and Clark J B 1968 J. Chem. Phys. 48 5509
[1] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[2] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[3] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[4] Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Song-lin Dang(党松琳), Zong-Qiang Ma(马宗强), Hai-Quan Sun(孙海权), An-Min He(何安民), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(6): 066201.
[5] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[6] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[7] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[8] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[9] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[10] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[11] Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松). Chin. Phys. B, 2021, 30(3): 034204.
[12] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[13] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[14] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[15] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
No Suggested Reading articles found!