Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050701    DOI: 10.1088/1674-1056/abd691
GENERAL Prev   Next  

Phase transition of shocked water up to 6 GPa: Transmittance investigation

Lang Wu(吴浪)1,2, Yue-Hong Ren(任月虹)1,2, Wen-Qiang Liao(廖文强)1,2, Xi-Chen Huang(黄曦晨)1,2, Fu-Sheng Liu(刘福生)1,2, Ming-Jian Zhang(张明建)1,2, and Yan-Yun Sun(孙燕云)1,2,†
1 Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
2 Sichuan Provincial Key Laboratory(for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
Abstract  The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system. Based on the light scattering theory and phase transformation kinetics, the phase transition mechanism of the water under multiple shocks is discussed. The experimental data indicate that the evolution of the transmittance of the shocked water can be broadly divided into three stages: relaxation stage, decline stage, and recovery stage. In the early stage of the phase transition, the new phase particles began to form around the quartz/window interface. It should be mentioned that the water/ice phase boundary seems to move toward the liquid region in one experiment of this work. Due to the new phase core being much smaller than the wavelength of the incident light, the transmittance of the sample within the relaxation stage remains steady. The decline stage can be divided into the rapid descent stage and the slow descent stage in this work, which is considered as the different growth rates of the new phase particle under different shock loadings. The recovery stage is attributed to the emergence of the new phase particles which are bigger than the critical value. However, the influence of the size growth and the population growth of the new phase particles on the transmittance restrict each other, which may be responsible for the phenomenon that the transmittance curve does not return to the initial level.
Keywords:  phase transition      shocked water      multiple compresses      transmittance      scattering  
Received:  05 September 2020      Revised:  04 December 2020      Accepted manuscript online:  24 December 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  64.60.Bd (General theory of phase transitions)  
  42.25.Fx (Diffraction and scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604271).
Corresponding Authors:  Yan-Yun Sun     E-mail:  sunyanyun@home.swjtu.edu.cn

Cite this article: 

Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云) Phase transition of shocked water up to 6 GPa: Transmittance investigation 2021 Chin. Phys. B 30 050701

[1] Ehrenfreund P, Fraser H J, Blum J, Cartwright J H E, Garciaruiz J M, Hadamcik E, Levasseurregourd A C, PriceS D, Prodi F and Sarkissian A 2003 Planet Space Sci. 51 473
[2] Falenty A, Hansen T C and Kuhs W F 2014 Nature 516 231
[3] Whalley E, Davidson D W and Heath J B R 1966 J. Chem. Phys. 45 3976
[4] Lebel L S, Brousseau P, Erhardt L and Andrews W S 2014 Combust Flame. 161 1038
[5] Lee K K M, Benedetti L R, Jeanloz R, Celliers P M, Eggert J H, Hicks D G, Moon S J, Mackinon A, Silva L B D, Bradley D K, Unites W, Collins G W, Henry E, Koenig M, BenuzzimounaixA, Pasley J and Neely D 2006 J. Chem. Phys. 125 014701
[6] Smyth J R, Holl C M, Frost D J and Jacobsen S D 2004 Phys. Earth Planet. Inter. 143 271
[7] Tulk C A, Benmore C J, Urquidi J, Klug D D, Neuefeind J, Tomberli B and Egelstaff P A 2002 Science 297 1320
[8] Poole P H, Sciortino F, Essmann U and Stanley H E 1992 Nature 360 324
[9] Palmer J C, Martelli F, Liu Y, Car R, Panagiotopoulos A Z and Debenedetti P G 2014 Nature 510 385
[10] Nellis W J 2006 Rep. Prog. Phys. 69 1479
[11] Kadau K, Germann T C, Lomdahl P S and Holian B L 2002 Science 296 1681
[12] Christian J W and Otte H M 2003 Mater. Today 6 53
[13] Dolan D H and Gupta Y M 2004 AIP Conference Proceedings 706 167
[14] Walsh J M and Rice M H 1957 J. Chem. Phys. 26 815
[15] Bastea M, Bastea S, Reaugh J E and Reisman D B 2007 Phys. Rev. B 75 172104
[16] Dolan D H and Gupta Y M 2004 J. Chem. Phys. 121 9050
[17] Dolan D H and Gupta Y M 2003 Chem. Phys. Lett. 374 608
[18] Ren Y H, Wu L, Fan Z N, Wang Y G, Liu F S, Chen J Y, Zhang M J and Sun Y Y 2019 Europhys. Lett. 128 20003
[19] Dolan D H, Knudson M D, Hall C A and Deeney C 2007 Nat. Phys. 3 339
[20] Apetz R and Bruggen M P B V 2003 J. Am. Ceram. Soc. 86 480
[21] Chau R, Mitchell A C, Minich R W and Nellis W J 2001 J. Chem. Phys. 114 1361
[22] Gaedner A S and Sharp M J 2010 J. Geophys. Res-Earth. 115 F1
[23] Batani D, Morelli A, Tomasini M, Mounaix A B, Cathala B 2002 Phys. Rev. Lett. 88 235502
[24] Mishima O, Saito S and Ohmine I 2002 Nature 416 409
[25] Du Q, Freysz E and Shen Y R 1994 Phys. Rev. Lett. 72 238
[26] Ostroverkhov V, Waychunas G A and Shen Y R 2005 Phys. Rev. Lett. 94 046102
[27] Wagner W and Pruss A 2002 J. Phys. Chem. Ref. Data 31 387
[28] Li Y H, Liu F S, Cheng X L, Zhang M J and Xue X D 2011 Acta. Phys. Sin. 60 126202 (in Chinese)
[29] Walsh J M and Christian R H 1955 Phys. Rev. 97 1544
[30] Li Y H 2011 Research on Crystallization of Water Induced by Fused Quartz under Shock Compression, Ph. D Dissertation (Chengdu: Southwest Jiao Tong University) (in Chinese)
[31] Siebert K J 2000 J. Am. Soc. Brew. Chem. 58 97
[32] Fu Q and Sun W 2001 Appl. Opt. 40 1354
[33] Guan Z D, Zhang Z T, and Jiao J S 1992 Physical Properties of Inorganic Materials (Beijing: Tsinghua University Press) pp. 182-186 (in Chinese)
[34] Gleason A E, Bolme C A, Galtier E, Lee H J and Mao W L 2017 Phys. Rev. Lett. 119 025701
[35] Barber P W 1984 J. Colloid. Interf. Sci. 98 290
[36] Myint P C and Belof J L 2018 J. Phys.: Condens. Matter 30 233002
[37] Huber E and Frost M 1998 J. Water. Supply. Res. T. 47 87
[38] Wagner W and Pruss A 1994 J. Phys. Chem. Ref. Data 23 515
[39] Pistorius C W F T, Rapoport E and Clark J B 1968 J. Chem. Phys. 48 5509
[1] Influence of Coulomb force between two electrons on double ionization of He-like atoms
Peipei Liu(刘培培), Yongfang Li(李永芳), and Jingtao Zhang(张敬涛). Chin. Phys. B, 2022, 31(1): 013202.
[2] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[3] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[4] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[5] Excess-iron driven spin glass phase in Fe1+yTe1-xSex
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程). Chin. Phys. B, 2021, 30(8): 087402.
[6] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[7] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[8] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[9] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[10] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[11] Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Song-lin Dang(党松琳), Zong-Qiang Ma(马宗强), Hai-Quan Sun(孙海权), An-Min He(何安民), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(6): 066201.
[12] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[13] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[14] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[15] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
No Suggested Reading articles found!