Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024207    DOI: 10.1088/1674-1056/abd690
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure

Xiangxian Wang(王向贤)1,†, Jiankai Zhu(朱剑凯)1, Yueqi Xu(徐月奇)1, Yunping Qi(祁云平)2, Liping Zhang(张丽萍)1, Hua Yang(杨华)1, and Zao Yi(易早)3
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China; 2 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; 3 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  A novel complementary grating structure is proposed for plasmonic refractive index sensing due to its strong resonance at near-infrared wavelength. The reflection spectra and the electric field distributions are obtained via the finite-difference time-domain method. Numerical simulation results show that multiple surface plasmon resonance modes can be excited in this novel structure. Subsequently, one of the resonance modes shows appreciable potential in refractive index sensing due to its wide range of action with the environment of the analyte. After optimizing the grating geometric variables of the structure, the designed structure shows the stable sensing performance with a high refractive index sensitivity of 1642 nm per refractive index unit (nm/RIU) and the figure of merit of 409 RIU-1. The promising simulation results indicate that such a sensor has a broad application prospect in biochemistry.
Keywords:  plasmonic sensor      gold      silicon      grating  
Received:  26 October 2020      Revised:  15 December 2020      Accepted manuscript online:  24 December 2020
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.-p (Wave optics)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61865008) and the Scientific Research Fund of Sichuan Provincial Science and Technology Department, China (Grant No. 2020YJ0137).
Corresponding Authors:  Corresponding author. E-mail: wangxx869@lut.edu.cn   

Cite this article: 

Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早) A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure 2021 Chin. Phys. B 30 024207

1 Gao H, Zhao X, Zhang H, Chen J, Wang S and Yang H 2020 J. Electron. Mater. 49 5248
2 Guan S, Li R, Sun X, Xian T and Yang H 2020 Mater. Technol.
3 Yan Y, Yang H, Yi Z, Xian T, Li R and Wang X 2019 Desalin. Water Treat. 170 349
4 Yu P, Yang H, Chen X, Yi Z, Yao W, Chen J, Yi Y and Wu P 2020 Renew. Energy. 158 227
5 Liu Z, Tang P, Liu X, Yi Z, Liu G, Wang Y and Liu M 2019 Nanotechnology 30 305203
6 Ge R, Yan B, Xie J, Liu E, Tan W and Liu J 2020 J. Magn. Magn. Mater. 500 166367
7 Guo Z, Yan B and Liu J 2020 J. Opt. 22 035002
8 He W, Feng Y, Hu Z D, Balmakou A, Khakhomov S, Deng Q and Wang J 2020 IEEE Sens. J. 20 1801
9 Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
10 Zhang Y, Wu P, Zhou Z, Chen X, Yi Z, Zhu J, Zhang T and Jile H 2020 IEEE Access. 8 85154
11 Liu C, Yang L, Liu Q, Wang F, Sun Z, Sun T, Mu H and Chu P K 2018 Plasmonics 13 779
12 Wang J, Liu C, Wang F, Su W, Yang L, Lv J, Fu G, Li X, Liu Q, Sun T and Chu P 2020 Results Phys. 18 103240
13 Wang X, Wu Y, Wen X, Zhu J, Bai X, Qi Y and Yang H 2020 Opt. Quantum Electron. 52 238
14 Wu Y, Wang X, Wen X, Zhu J, Bai X, Jia T, Yang H, Zhang L and Qi Y 2020 Phys. Lett. A. 384 126544
15 Wang X, Zhu J, Wu Y, Xu Y, Su Y, Zhang L, Qi Y, Wen X and Yang H 2020 Results Phys. 17 103175
16 Im H, Shao H, Park Y Il, Peterson V M, Castro C M, Weissleder R and Lee H 2014 Nat. Biotechnol. 32 490
17 Coskun A F, Cetin A E, Galarreta B C, Alvarez D A and Altug H 2014 Sci. Rep. 4 6789
18 Guner H, Ozgur E, Kokturk G, Celik M, Esen E, Topal A E, Ayas S, Uludag Y, Elbuken C and Dana A 2017 Sensors Actuators B Chem. 239 571
19 Aspnes D E and Studna A A 1983 Phys. Rev. B 27 985
20 Malitson H 1965 J. Opt. Soc. Am. 55 1205
21 Johnson P B and Christy R W 1972 Phys. Rev. B. 6 4370
22 Cao J, Sun Y, Kong Y and Qian W 2019 Sensors (Switzerland) 19 405
23 Wang X, Zhu J, Tong H, Yang X, Wu X, Pang Z, Yang H and Qi Y 2019 Chin. Phys. B. 28 044201
24 Zhu J, Wang X, Wu Y, Su Y, Jia T, Yang H, Zhang L, Qi Y and Wen X 2020 Photonic Sensors 10 375
25 Chen J, Nie H, Peng C, Qi S, Tang C, Zhang Y, Wang L and Park G S 2018 J. Light. Technol. 36 3481
26 Zhu J, Wang X, Wu X, Su Y, Xu Y, Qi Y, Zhang L and Yang H 2020 Chin. Phys. B 29 114204
27 Chen J, Yuan J, Zhang Q, Ge H, Tang C, Liu Y and Guo B 2018 Opt. Mater. Express. 8 342
28 Chen J, Zhang Q, Peng C, Tang C, Shen X, Deng L and Park G 2018 IEEE Photonics Technol. Lett. 30 728
29 Li Y, Liu Y, Liu Z, Tang Q, Shi L, Chen Q, Du G, Wu B, Liu G and Li L 2019 Appl. Phys. Express. 12 072002
30 Qi Y, Zhang Y, Liu C, Zhang T, Zhang B, Wang L, Deng X, Bai Y and Wang X 2020 Results Phys. 16 103012
31 Qi Y, Wang L, Zhang Y, Zhang T, Zhang B, Deng X and Wang X 2020 Chin. Phys. B 29 067303
32 Abutoama M and Abdulhalim I 2015 Opt. Express 23 28667
[1] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[2] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[3] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[4] A 90° mixed-mode twisted nematic liquid-crystal-on-silicon with an insulating protrusion structure
Wen-Juan Li(李文娟), Yu-Qiang Guo(郭玉强), Chi Zhang(张弛), Hong-Mei Ma(马红梅), and Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2021, 30(6): 064210.
[5] Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking
Zhe Hu(胡哲), Wen-Qiang Hua(滑文强), and Jie Wang(王 劼). Chin. Phys. B, 2021, 30(6): 064201.
[6] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[7] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[8] A comparative study of the self-propelled jumping capabilities of coalesced droplets on RTV surfaces and superhydrophobic surfaces
Sheng-Wu Wang(王晟伍), Lu Peng(彭璐), Jun-Wu Chen(陈俊武), and Lee Li(李黎). Chin. Phys. B, 2021, 30(4): 046501.
[9] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[10] Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization
Siyuan Xu(许思源), Xiaoxian Zhu(朱孝先), Ji Wang(王佶), Yuanfeng Li(李远锋), Yitan Gao(高亦谈), Kun Zhao(赵昆), Jiangfeng Zhu(朱江峰), Dacheng Zhang(张大成), Yunlin Chen(陈云琳), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(4): 048402.
[11] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[12] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[13] New DDSCR structure with high holding voltage for robust ESD applications
Zi-Jie Zhou(周子杰), Xiang-Liang Jin(金湘亮), Yang Wang(汪洋), and Peng Dong(董鹏). Chin. Phys. B, 2021, 30(3): 038501.
[14] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[15] Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating
Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒). Chin. Phys. B, 2021, 30(2): 028702.
No Suggested Reading articles found!