Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 053202    DOI: 10.1088/1674-1056/abd46f

High-precision three-dimensional Rydberg atom localization in a four-level atomic system

Hengfei Zhang(张恒飞)1,2, Jinpeng Yuan(元晋鹏)1,2,†, Lirong Wang(汪丽蓉)1,2,‡, Liantuan Xiao(肖连团)1,2, and Suo-tang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Rydberg atoms have been widely investigated due to their large size, long radiative lifetime, huge polarizability and strong dipole-dipole interactions. The position information of Rydberg atoms provides more possibilities for quantum optics research, which can be obtained under the localization method. We study the behavior of three-dimensional (3D) Rydberg atom localization in a four-level configuration with the measurement of the spatial optical absorption. The atomic localization precision depends strongly on the detuning and Rabi frequency of the involved laser fields. A 100% probability of finding the Rydberg atom at a specific 3D position is achieved with precision of ~0.031λ. This work demonstrates the possibility for achieving the 3D atom localization of the Rydberg atom in the experiment.
Keywords:  Rydberg atom      three-dimensional localization      standing-wave field  
Received:  17 November 2020      Revised:  11 December 2020      Accepted manuscript online:  17 December 2020
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
Fund: Project supported by the National R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61875112, 61705122, 62075121, and 91736209), the Program for Sanjin Scholars of Shanxi Province, the Key Research and Development Program of Shanxi Province for International Cooperation (Grant No. 201803D421034), Shanxi Scholarship Council of China (Grant Nos. 2020-073), and 1331KSC.
Corresponding Authors:  Jinpeng Yuan, Lirong Wang     E-mail:;

Cite this article: 

Hengfei Zhang(张恒飞), Jinpeng Yuan(元晋鹏), Lirong Wang(汪丽蓉), Liantuan Xiao(肖连团), and Suo-tang Jia(贾锁堂) High-precision three-dimensional Rydberg atom localization in a four-level atomic system 2021 Chin. Phys. B 30 053202

[1] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)
[2] Spencer W P, Vaidyanathan A G, Kleppner D and Ducas T W 1981 Phys. Rev. A 24 2513
[3] Ponomarenko D V and Shestakov A F 1993 Chem. Phys. Lett. 210 269
[4] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2019 Nat. Phys. 5 110
[5] Killian T C, Lim M J, Kulin S, Dumke R, Bergeson S D and Rolston S L 2001 Phys. Rev. Lett. 86 3759
[6] Honer J, Weimer H, Pfau T and Büchler H P 2010 Phys. Rev. Lett. 105 160404
[7] Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313
[8] Müller M, Lesanovsky I, Weimer H, Büchler H P and Zoller P 2009 Phys. Rev. Lett. 102 170502
[9] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[10] Phillips W D 1998 Rev. Mod. Phys. 70 721
[11] Johnson K S, Thywissen J H, Dekker W H, Berggren K K, Chu A P, Younkin R and Prentiss M 1998 Science 280 1583
[12] Yuan J, Wu C, Wang L, Chen G and Jia S 2019 Opt. Lett. 44 4123
[13] Gorshkov A V, Jiang L, Greiner M, Zoller P and Lukin M D 2008 Phys. Rev. Lett. 100 093005
[14] Collins G P 1996 Phys. Today 49 18
[15] Qamar S, Zhu S Y and Zubairy M S 2000 Phys. Rev. A 61 063806
[16] Sahrai M, Tajalli H, Kapale K T and Zubairy M S 2005 Phys. Rev. A 72 013820
[17] Ding C, Li J, Zhan Z and Yang X 2011 Phys. Rev. A 83 922
[18] Wang F and J Xu 2016 Chin. Phys. B 25 104201
[19] Zhu Z, Chen A, Liu S and Yang W 2016 Phys. Lett. A 380 3956
[20] Wang Z, Cao D and Yu B 2016 Appl. Opt. 55 3582
[21] Song F, Chen J, Wang Z and Yu B 2018 Front. Phys. 13 134208
[22] Hong Y, Wang Z and Yu B 2019 J. Opt. Soc. Am. B 36 746
[23] Zhang D, Yu R, Sun Z, Ding C and Zubairy M S 2019 J. Phys. B: At. Mol. Opt. Phys. 52 035502
[24] Luo M, Liu W, Cai D and Gao S 2020 Chin. Phys. B 29 124205
[25] Rahmatullah, Ziauddin, Chuang Y, Lee R K and Qamar S 2018 J. Opt. Soc. Am. B 35 2588
[26] Yuan J, Dong S, Wu C, Wang L, Xiao L and Jia S 2020 Opt. Express 28 23820
[27] Hamedi H R, Sahrai M, Khoshsima H and Juzeliūnas G 2017 J. Opt. Soc. Am. B 34 1923
[28] Scully M and Zubairy M 1997 Quantum Optics (Cambridge: Cambridge University Press)
[1] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[2] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[3] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[4] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
[5] Tunable multistability and nonuniform phases in a dimerized two-dimensional Rydberg lattice
Han-Xiao Zhang(张焓笑), Chu-Hui Fan(范楚辉), Cui-Li Cui(崔淬砺), Jin-Hui Wu(吴金辉). Chin. Phys. B, 2020, 29(1): 013204.
[6] Properties of collective Rabi oscillations with two Rydberg atoms
Dan-Dan Ma(马丹丹), Ke-Ye Zhang(张可烨), Jing Qian(钱静). Chin. Phys. B, 2019, 28(1): 013202.
[7] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[8] Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement
Linjie Zhang(张临杰), Jiasheng Liu(刘家晟), Yue Jia(贾玥), Hao Zhang(张好), Zhenfei Song(宋振飞), Suotang Jia(贾锁堂). Chin. Phys. B, 2018, 27(3): 033201.
[9] Rydberg quantum controlled-phase gate with one control and multiple target qubits
S L Su(苏石磊). Chin. Phys. B, 2018, 27(11): 110304.
[10] Velocity-selective spectroscopy measurements of Rydberg fine structure states in a hot vapor cell
Jun He(何军), Dongliang Pei(裴栋梁), Jieying Wang(王杰英), Junmin Wang(王军民). Chin. Phys. B, 2017, 26(11): 113202.
[11] Fractal dynamics in the ionization of helium Rydberg atoms
Xiulan Xu(徐秀兰), Yanhui Zhang(张延惠), Xiangji Cai(蔡祥吉), Guopeng Zhao(赵国鹏), Lisha Kang(康丽莎). Chin. Phys. B, 2016, 25(11): 110301.
[12] Nonlinear spectroscopy of barium in parallel electric and magnetic fields
Yang Hai-Feng, Gao Wei, Cheng Hong, Liu Hong-Ping. Chin. Phys. B, 2014, 23(10): 103201.
[13] Spectral decomposition at complex laser polarization configuration
Yang Hai-Feng, Gao Wei, Cheng Hong, Liu Hong-Ping. Chin. Phys. B, 2013, 22(5): 053201.
[14] An effective quantum defect theory for the diamagnetic spectrum of barium Rydberg atom
Li Bo, Liu Hong-Ping. Chin. Phys. B, 2013, 22(1): 013203.
[15] Recombination during expansion of ultracold plasma
Zhao Jian-Ming, Zhang Lin-Jie, Feng Zhi-Gang, Li Chang-Yong, Jia Suo-Tang. Chin. Phys. B, 2010, 19(4): 043202.
No Suggested Reading articles found!