Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 046801    DOI: 10.1088/1674-1056/abd396

Super-strong interactions between multivalent anions and graphene

Xing Liu(刘星)1 and Guosheng Shi(石国升)1,2,†
1 Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, China; 2 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  Based on the density functional theory (DFT) calculations, we showed that the interactions between different valence anions (PO43-, CH3PO42-, (CH3)2PO4-) and graphene significantly increased as the valence of anion increased from negative monovalence to negative trivalence. The adsorption energy of (CH3)2PO4- on the electron-rich graphene flake (C84H24) is -8.3 kcal/mol. The adsorption energy of CH3PO42- on the electron-rich graphene flake (C84H24) is -48.0 kcal/mol, which is about six times that of (CH3)2PO4- adsorption on electron-rich graphene flake (C84H24) and is even much larger than that of CO32- adsorption on electron-deficient aromatic ring C6F6 (-28.4 kcal/mol). The adsorption energy of PO43- on the electron-rich graphene flake (C84H24) is -159.2 kcal/mol, which is about 20 times that of (CH3)2PO4- adsorption on the graphene flake (C84H24). The super-strong adsorption energy is mainly attributed to the orbital interactions between multivalent anions and graphene. This work provides new insights for understanding the interaction between multivalent anions and π -electron-rich carbon-based nanomaterials and is helpful for the design of graphene-based DNA biosensor.
Keywords:  graphene      multivalent anions      anion-π interaction      density functional theory  
Received:  19 October 2020      Revised:  19 November 2020      Accepted manuscript online:  15 December 2020
PACS:  81.05.ue (Graphene)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  31.15.E (Density-functional theory)  
Fund: Project supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No. 11722548), the China Postdoctoral Science Foundation (Grant No. 2019M651462), the National Natural Science Foundation of China (Grant No. U1932123), the Innovative Research Team of High-Level Local Universities in Shanghai, the Open Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy and the Science and Technology Commission of Shanghai Municipality (Gant No. 19DZ2270200), the Deepcomp7000 and ScGrid of Supercomputing Center, Computer Network Information Center of the Chinese Academy of Sciences, the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (second phase), the Shanghai Supercomputer Center of China, the High Performance Computing Platform of Shanghai University.
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Xing Liu(刘星) and Guosheng Shi(石国升) Super-strong interactions between multivalent anions and graphene 2021 Chin. Phys. B 30 046801

1 Qui\nonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A and Dey\`a P M 2002 Angew. Chem. Int. Ed. 41 3389
2 Alkorta I, Rozas I and Elguero J 2002 J. Am. Chem. Soc. 124 8593
3 Mascal M, Armstrong A and Bartberger M D 2002 J. Am. Chem. Soc. 124 6274
4 Kim D, Tarakeshwar P and Kim K S 2004 J. Phys. Chem. A 108 1250
5 Schottel B L, Chifotides H T and Dunbar K R 2008 Chem. Soc. Rev. 37 68
6 Caltagirone C and Gale P A 2009 Chem. Soc. Rev. 38 520
7 Estarellas C, Frontera A, Qui\ nonero D and Dey\`a P M 2011 Angew. Chem. Int. Ed. 50 415
8 Frontera A, Gamez P, Mascal M, Mooibroek T J and Reedijk J 2011 Angew. Chem. Int. Ed. 50 9564
9 Wang D X and Wang M X 2013 J. Am. Chem. Soc. 135 892
10 Chifotides H T and Dunbar K R 2013 Acc. Chem. Res. 46 894
11 Lucas X, Bauzà A, Frontera A and Qui\nonero D 2016 Chem. Sci. 7 1038
12 Xi J and Xu X 2016 Phys. Chem. Chem. Phys. 18 6913
13 Anstöter C S, Rogers J P and Verlet J R R 2019 J. Am. Chem. Soc. 141 6132
14 Zhang J, Xiang L, Yan B and Zeng H 2020 J. Am. Chem. Soc. 142 1710
15 Garau C, Frontera A, Qui\ nonero D, Russo N and Dey\`a P M 2011 J. Chem. Theory Comput. 7 3012
16 Lucas X, Qui\ nonero D, Frontera A and Dey\`a P M 2009 J. Phys. Chem. A 113 10367
17 Shi G, Yang J, Ding Y and Fang H 2014 ChemPhysChem 15 2588
18 Shi G, Ding Y and Fang H 2012 J. Comput. Chem. 33 1328
19 Lu C H, Yang H H, Zhu C L, Chen X and Chen G N 2009 Angew. Chem. Int. Ed. 48 4785
20 Yang W, Ratinac K R, Ringer S P, Thordarson P, Gooding J J and Braet F 2010 Angew. Chem. Int. Ed. 49 2114
21 Sassolas A, Leca-Bouvier B D and Blum L J 2008 Chem. Rev. 108 109
22 Min S K, Kim W Y, Cho Y and Kim K S 2011 Nat. Nanotechnol. 6 162
23 Tang L, Wang Y and Li J 2015 Chem. Soc. Rev. 44 6954
24 Xu Z, Lei X, Tu Y, Tan Z J, Song B and Fang H 2017 Chem. -Eur. J. 23 13100
25 Lei X, Ma H and Fang H 2020 Nanoscale 12 6699
26 Ma H, Xu Z, Fang H and Lei X 2020 Phys. Chem. Chem. Phys. 22 11740
27 Antony J and Grimme S 2008 Phys. Chem. Chem. Phys. 10 2722
28 Sowerby S J, Cohn C A, Heckl W M and Holm N G 2001 Proc. Natl. Acad. Sci. 98 820
29 Gowtham S, Scheicher R H, Ahuja R, Pandey R and Karna S P 2007 Phys. Rev. B 76 033401
30 Varghese N, Mogera U, Govindaraj A, Das A, Maiti P K, Sood A K and Rao C N R 2009 ChemPhysChem 10 206
31 Westheimer F H 1987 Science 235 1173
32 Watson J D and Crick F H C 1953 Nature 171 737
33 Villa F, MacKerell A D, Roux B and Simonson T 2018 J. Phys. Chem. A 122 6147
34 Frisch M J, Trucks G W, Schlegel H B, et al.2016 Gaussian 16 Rev. C.01(Wallingford, CT)
35 te Velde G, Bickelhaupt F M, Baerends E J, Fonseca Guerra C, van Gisbergen S J A, Snijders J G and Ziegler T 2001 J. Comput. Chem. 22 931
36 Wang X B, Yang X, Nicholas J B and Wang L S 2001 Science 294 1322
37 Boldyrev A I and Simons J 1994 J. Phys. Chem. 98 2298
38 Pluha\vrovà E, On\vcàk M, Seidel R, Schroeder C, Schroeder W, Winter B, Bradforth S E, Jungwirth P and Slav\'í\vcek P 2012 J. Phys. Chem. B 116 13254
39 Sakulpaisan S, Vongsetskul T, Reamouppaturm S, Luangkachao J, Tantirungrotechai J and Tangboriboonrat P 2016 J. Environ. Manage. 167 99
40 Mahadevi A S and Sastry G N 2013 Chem. Rev. 113 2100
41 Lu T and Chen F 2012 J. Comput. Chem. 33 580
42 Shi G, Liu J, Wang C, Song B, Tu Y, Hu J and Fang H 2013 Sci. Rep. 3 3436
43 Shi G S, Wang Z G, Zhao J J, Hu J and Fang H P 2011 Chin. Phys. B 20 068101
[1] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[2] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[3] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[4] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[5] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[6] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[7] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[8] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!