Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 046801    DOI: 10.1088/1674-1056/abd396

Super-strong interactions between multivalent anions and graphene

Xing Liu(刘星)1 and Guosheng Shi(石国升)1,2,†
1 Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, China; 2 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  Based on the density functional theory (DFT) calculations, we showed that the interactions between different valence anions (PO43-, CH3PO42-, (CH3)2PO4-) and graphene significantly increased as the valence of anion increased from negative monovalence to negative trivalence. The adsorption energy of (CH3)2PO4- on the electron-rich graphene flake (C84H24) is -8.3 kcal/mol. The adsorption energy of CH3PO42- on the electron-rich graphene flake (C84H24) is -48.0 kcal/mol, which is about six times that of (CH3)2PO4- adsorption on electron-rich graphene flake (C84H24) and is even much larger than that of CO32- adsorption on electron-deficient aromatic ring C6F6 (-28.4 kcal/mol). The adsorption energy of PO43- on the electron-rich graphene flake (C84H24) is -159.2 kcal/mol, which is about 20 times that of (CH3)2PO4- adsorption on the graphene flake (C84H24). The super-strong adsorption energy is mainly attributed to the orbital interactions between multivalent anions and graphene. This work provides new insights for understanding the interaction between multivalent anions and π -electron-rich carbon-based nanomaterials and is helpful for the design of graphene-based DNA biosensor.
Keywords:  graphene      multivalent anions      anion-π interaction      density functional theory  
Received:  19 October 2020      Revised:  19 November 2020      Accepted manuscript online:  15 December 2020
PACS:  81.05.ue (Graphene)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  31.15.E (Density-functional theory)  
Fund: Project supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No. 11722548), the China Postdoctoral Science Foundation (Grant No. 2019M651462), the National Natural Science Foundation of China (Grant No. U1932123), the Innovative Research Team of High-Level Local Universities in Shanghai, the Open Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy and the Science and Technology Commission of Shanghai Municipality (Gant No. 19DZ2270200), the Deepcomp7000 and ScGrid of Supercomputing Center, Computer Network Information Center of the Chinese Academy of Sciences, the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (second phase), the Shanghai Supercomputer Center of China, the High Performance Computing Platform of Shanghai University.
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Xing Liu(刘星) and Guosheng Shi(石国升) Super-strong interactions between multivalent anions and graphene 2021 Chin. Phys. B 30 046801

1 Qui\nonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A and Dey\`a P M 2002 Angew. Chem. Int. Ed. 41 3389
2 Alkorta I, Rozas I and Elguero J 2002 J. Am. Chem. Soc. 124 8593
3 Mascal M, Armstrong A and Bartberger M D 2002 J. Am. Chem. Soc. 124 6274
4 Kim D, Tarakeshwar P and Kim K S 2004 J. Phys. Chem. A 108 1250
5 Schottel B L, Chifotides H T and Dunbar K R 2008 Chem. Soc. Rev. 37 68
6 Caltagirone C and Gale P A 2009 Chem. Soc. Rev. 38 520
7 Estarellas C, Frontera A, Qui\ nonero D and Dey\`a P M 2011 Angew. Chem. Int. Ed. 50 415
8 Frontera A, Gamez P, Mascal M, Mooibroek T J and Reedijk J 2011 Angew. Chem. Int. Ed. 50 9564
9 Wang D X and Wang M X 2013 J. Am. Chem. Soc. 135 892
10 Chifotides H T and Dunbar K R 2013 Acc. Chem. Res. 46 894
11 Lucas X, Bauzà A, Frontera A and Qui\nonero D 2016 Chem. Sci. 7 1038
12 Xi J and Xu X 2016 Phys. Chem. Chem. Phys. 18 6913
13 Anstöter C S, Rogers J P and Verlet J R R 2019 J. Am. Chem. Soc. 141 6132
14 Zhang J, Xiang L, Yan B and Zeng H 2020 J. Am. Chem. Soc. 142 1710
15 Garau C, Frontera A, Qui\ nonero D, Russo N and Dey\`a P M 2011 J. Chem. Theory Comput. 7 3012
16 Lucas X, Qui\ nonero D, Frontera A and Dey\`a P M 2009 J. Phys. Chem. A 113 10367
17 Shi G, Yang J, Ding Y and Fang H 2014 ChemPhysChem 15 2588
18 Shi G, Ding Y and Fang H 2012 J. Comput. Chem. 33 1328
19 Lu C H, Yang H H, Zhu C L, Chen X and Chen G N 2009 Angew. Chem. Int. Ed. 48 4785
20 Yang W, Ratinac K R, Ringer S P, Thordarson P, Gooding J J and Braet F 2010 Angew. Chem. Int. Ed. 49 2114
21 Sassolas A, Leca-Bouvier B D and Blum L J 2008 Chem. Rev. 108 109
22 Min S K, Kim W Y, Cho Y and Kim K S 2011 Nat. Nanotechnol. 6 162
23 Tang L, Wang Y and Li J 2015 Chem. Soc. Rev. 44 6954
24 Xu Z, Lei X, Tu Y, Tan Z J, Song B and Fang H 2017 Chem. -Eur. J. 23 13100
25 Lei X, Ma H and Fang H 2020 Nanoscale 12 6699
26 Ma H, Xu Z, Fang H and Lei X 2020 Phys. Chem. Chem. Phys. 22 11740
27 Antony J and Grimme S 2008 Phys. Chem. Chem. Phys. 10 2722
28 Sowerby S J, Cohn C A, Heckl W M and Holm N G 2001 Proc. Natl. Acad. Sci. 98 820
29 Gowtham S, Scheicher R H, Ahuja R, Pandey R and Karna S P 2007 Phys. Rev. B 76 033401
30 Varghese N, Mogera U, Govindaraj A, Das A, Maiti P K, Sood A K and Rao C N R 2009 ChemPhysChem 10 206
31 Westheimer F H 1987 Science 235 1173
32 Watson J D and Crick F H C 1953 Nature 171 737
33 Villa F, MacKerell A D, Roux B and Simonson T 2018 J. Phys. Chem. A 122 6147
34 Frisch M J, Trucks G W, Schlegel H B, et al.2016 Gaussian 16 Rev. C.01(Wallingford, CT)
35 te Velde G, Bickelhaupt F M, Baerends E J, Fonseca Guerra C, van Gisbergen S J A, Snijders J G and Ziegler T 2001 J. Comput. Chem. 22 931
36 Wang X B, Yang X, Nicholas J B and Wang L S 2001 Science 294 1322
37 Boldyrev A I and Simons J 1994 J. Phys. Chem. 98 2298
38 Pluha\vrovà E, On\vcàk M, Seidel R, Schroeder C, Schroeder W, Winter B, Bradforth S E, Jungwirth P and Slav\'í\vcek P 2012 J. Phys. Chem. B 116 13254
39 Sakulpaisan S, Vongsetskul T, Reamouppaturm S, Luangkachao J, Tantirungrotechai J and Tangboriboonrat P 2016 J. Environ. Manage. 167 99
40 Mahadevi A S and Sastry G N 2013 Chem. Rev. 113 2100
41 Lu T and Chen F 2012 J. Comput. Chem. 33 580
42 Shi G, Liu J, Wang C, Song B, Tu Y, Hu J and Fang H 2013 Sci. Rep. 3 3436
43 Shi G S, Wang Z G, Zhao J J, Hu J and Fang H P 2011 Chin. Phys. B 20 068101
[1] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[2] Direct growth of graphene films without catalyst on flexible glass substrates by PECVD
Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔). Chin. Phys. B, 2021, 30(9): 098101.
[3] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[4] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[5] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[6] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[7] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[8] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[9] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[10] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[11] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[12] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[13] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[14] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[15] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[2] Yao Xin-cheng, Li Zhao-lin, Cheng Bing-ying, Han Xue-hai, Zhang Dao-zhong. INCREASING TRANSVERSE STABILITY OF OPTICAL TWEEZERS BY USING DUAL-GAUSSIAN BEAM PROFILE[J]. Chin. Phys., 2000, 9(1): 65 -68 .
[3] M. Matsumoto, A. Morisako, S. Takei, Ma Yun-Gui, Yang Zheng. Effects of underlayer materials and substrate temperatures on the structural and magnetic properties of Nd2Fe14B films[J]. Chin. Phys., 2004, 13(11): 1969 -1974 .
[4] Wen Lei, Li Shun-Guang, Huang Guo-Song, Hu Li-Li, Jiang Zhong-Hong. Optical transitions and upconversion properties of Er3+-doped chloride tellurite glasses[J]. Chin. Phys., 2004, 13(2): 258 -263 .
[5] Luo Ying, Ma Ben-Kun, Duan Su-Qing, Zhao Xian-Geng, Wang Li-Min. Effects of a donor on the bond property of quantum-dot molecules[J]. Chin. Phys., 2004, 13(6): 942 -947 .
[6] Lin Xue-Chun, Kong Yu-Peng, Zhang Ying, Zhang Jie, Yao Ai-Yun, Bi Yong, Sun Zhi-Pei, Cui Da-Fu, Li Rui-Ning, Wu Ling-An, Xu Zu-Yan. Mid-infrared generation based on a periodically poled LiNbO3 optical parametric oscillator[J]. Chin. Phys., 2004, 13(7): 1042 -1045 .
[7] Fu Shi-Liu, Yin Tao, Chai Fei. Synthesis and characterization of Ca2Sn1-xCexO4 with blue luminescence originating from Ce4+ charge transfer transition[J]. Chin. Phys., 2007, 16(10): 3129 -3133 .
[8] Jing Ji-Liang, Pan Qi-Yuan. Resonant frequencies of massless scalar field in rotating black-brane spacetime[J]. Chin. Phys. B, 2008, 17(6): 1985 -1989 .
[9] Qian Jun, Xie Ping, Xue Xiao-Guang, Wang Peng-Ye. Modelling of a DNA packaging motor[J]. Chin. Phys. B, 2009, 18(11): 4852 -4864 .
[10] Tang Li. Quantum information procession with fermions based on charge detection[J]. Chin. Phys. B, 2009, 18(12): 5155 -5160 .