Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 038703    DOI: 10.1088/1674-1056/abd395
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme

Hai-Tao Yu(于海涛)1, Zi-Han Meng(孟紫寒)1, Chen Liu(刘晨)1, Jiang Wang(王江)1,†, and Jing Liu(刘静)2
1 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; 2 Department of Neurology, Tangshan Gongren Hospital, Tangshan 063000, China
Abstract  This work explores the function of the noisy direct delayed feedback (NDDF) control strategy in suppressing the pathological oscillations in the basal ganglia (BG) with Parkinson's disease (PD). Deep brain stimulation (DBS) alleviates the PD state fantastically. However, due to its unclear mechanism and open-loop characteristic, it is challenging to further improve its effects with lower energy expenditure. The noise stimulus performs competitively in alleviating the PD state theoretically, but it cannot adapt to the neural condition timely and automatically due to its open-loop control scheme. The direct delayed feedback (DDF) control strategy is able to disturb excessive synchronous effectively. Therefore, the NDDF control strategy is proposed and researched based on a BG computational model, which can reflect the intrinsic properties of the BG neurons and their connections with thalamic neurons. Simulation results show that the NDDF control strategy with optimal parameters is effective in removing the pathological beta oscillations. By comparison, we find the NDDF control strategy performs more excellent than DDF in alleviating PD state. Additionally, we define the multiple-NDDF control strategy and find that the multiple-NDDF with appropriate parameters performs better than NDDF. The obtained results contribute to the cure for PD symptoms by optimizing the noise-induced improvement of the BG dysfunction.
Keywords:  basal ganglia      neural networks      Parkinsonian state      noise      delayed feedback  
Received:  29 August 2020      Revised:  20 October 2020      Accepted manuscript online:  15 December 2020
PACS:  87.19.lc (Noise in the nervous system)  
  87.19.lm (Synchronization in the nervous system)  
  87.19.X- (Diseases)  
  87.19.lr (Control theory and feedback)  
Fund: Project supported by Tianjin Natural Science Foundation, China (Grant No. 19JCYBJC18800), Tangshan Science and Technology Project, China (Grant No. 18130208A), and Hebei Science and Technology Project, China (Grant No. 18277773D).
Corresponding Authors:  Corresponding author. E-mail: jiangwang@tju.edu.cn   

Cite this article: 

Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静) Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme 2021 Chin. Phys. B 30 038703

1 Leventhal D K, Gage G J, Schmidt R, Pettibone J R, Case A C and Berke J D 2012 Neuron 73 523
2 Schiff S J 2010 Philos. Trans. A Math. Phys. Eng. Sci. 368 2269
3 Guo Y and Rubin J E 2011 Neural Netw. 24 602
4 Holt A B and Netoff T I 2014 Comput. Neurosci. 37 505
5 Daneshzand M, Faezipour M and Barkana B D 2018 PloS one 13 6165
6 Liu C, Wang J, Li H, Fietkiewicz C and Loparo K A 2018 IEEE Transactions on Neural Networks and Learning Systems 29 1864
7 Liu C, Wang J, Deng B, Li H, Fietkiewicz C and Loparo K A 2018 IEEE Transactions on Cybernetics 49 3655
8 Yu Y, Hao Y and Wang Q 2020 Neural Networks 122 308
9 Stefani A, Trendafilov V, Liguori C, Fedele E and Galati S 2017 Prog. Neurobiol. 151 157
10 Dorval A D and Grill W M 2014 Neurophysiol. 111 1949
11 Vitek J L, Zhang J, Hashimoto T, Russo G S and Baker K B 2012 Exp. Neurol. 233 581
12 Zhang J, Wang Z I, Baker K B and Vitek J L 2012 Exp. Neurol. 233 575
13 Lin W, Pu Y, Guo Y and Kurths J 2013 Europhys Lett. 102 20003
14 Pikovsky A and Rosenblum M 2015 Chaos 25 097616
15 Zhou S, Ji P, Zhou Q, Feng J, Kurths J and Lin W 2017 New J. Phys. 19 083004
16 Popovych O V, Lysyansky B, Rosenblum M, Pikovsky A and Tass P A 2017 PLoS one 3 1
17 Popovych O V and Tass P A 2018 Front. Physiol. 9 46
18 Pyragas K 1992 Phys. Lett. A 170 421
19 Pal S, Rosengren S M and Colebatch J G 2009 J. Vestib. Res. 19 137
20 Yu H, Wang J and Liu Q 2013 Neurocomputing 99 178
21 Liu C, Zhou C, Wang J, et al. \hrefhttps://doi.org/10.1109/TCYB.2019.2923317 2019 IEEE Transactions on Cybernetics 99 1
22 Funke K, Kerscher N J and W\'org\"otter F 2007 Eur. J. Neurosci. 26 1322
23 Yu H, Wang J, Du J, Deng B, Wei X and Liu C 2013 Phys. Rev. E 87 052917
24 Wang Q, Perc M, Duan Z and Chen G 2009 Chaos 19 023112
25 Terman D, Rubin J E, Yew A C and Wilson C J2002 Neurosci. 22 2963
26 Izhikevich E M 2003 IEEE Trans. Neural. Netw. 14 1569
27 Thibeault C M and Srinivasa N 2013 Front. Comput. Neurosci. 7 88
28 Izhikevich E M and Hoppensteadt F 2004 Chaos 14 3847
29 So R Q, Kent A R and Grill W M 2012 Comput. Neurosci. 32 499
30 Izhikevich E M 2004 IEEE Trans. Neural. Netw. 15 1063
31 Wichmann T and Soares J 2005 J. Neurosci. 95 2120
32 Steigerwald F, Potter M, Herzog J, Pinsker M, Kopper F and Mehdorn H 2008 J. Neurophysiol. 100 2515
33 Samoudi G, Nissbrandt H, Dutia M B and Bergquist F 2012 PLoS ONE 7 e29308
34 Rosenblum M and Pikovsky A 2004 Phys. Rev. E. 70 041904
35 Buzsaki G and Draguhn A 2004 Science 304 1926
36 Uhlhaas P J 2010 Trends Cogn. Sci. 14 72
37 Yu H, Wang J, Deng B, Wei X, Wong Y K, Chan W L, Tsang K M and Yu Z 2011 Chaos 21 013127
38 Yu H, Wang J, Liu Q, Wen J, Deng B and Wei X 2011 Chaos 21 043125
39 Wang R, Zhang Z, Qu J and Cao J 2011 IEEE Transactions on Neural Networks 22 1097
40 Yan C and Wang R 2012 Chin. Phys. Lett. 29 090501
41 Hauptmann, Popovych C O and Tass P A 2005 Neurocomputing 65-66 759
42 Hauptmann, Popovych C O and Tass P A 2007 Computing and Visualization in Science 10 71
43 Yu Y and Wang Q 2019 Nonlinear Dynamics 98 1065
44 Wang J, Niebur E, Hu J and Li X 2016 Sci. Rep. 6 27344
45 Schiff S J, So P, Chang T, Burke R E and Sauer T 1996 Phys. Rev. E 54 6708
46 Guo Y, Park C, Worth R M and Rubchinsky L L 2013 Front. Comput. Neurosc. 7 214
47 Chiken S and Nambu A 2014 Front. Syst. Neurosci. 8 33
48 Wang Z and Wang Q 2019 Nonlinear Dynamics 96 1649
49 Klinger N V and Mittal S 2016 Clin. Neurol. Neurosurg. 140 11
50 Hess C W, Vaillancourt D E and Okun M S 2013 Exp. Neurol. 247 296
51 Popovych O V and Tass P A 2014 Front. Neurol. 5
[1] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[2] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[3] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[4] Relationship between manifold smoothness and adversarial vulnerability in deep learning with local errors
Zijian Jiang(蒋子健), Jianwen Zhou(周健文), and Haiping Huang(黄海平). Chin. Phys. B, 2021, 30(4): 048702.
[5] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[6] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[7] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[8] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[9] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[10] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[11] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[12] Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(5): 057305.
[13] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[14] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[15] An Yb-fiber frequency comb phase-locked to microwave standard and optical reference
Hui-Bo Wang(汪会波), Hai-Nian Han(韩海年), Zi-Yue Zhang(张子越), Xiao-Dong Shao(邵晓东), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(3): 030601.
No Suggested Reading articles found!