Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048504    DOI: 10.1088/1674-1056/abd391

Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs

Xi-Ming Chen(陈喜明)1,2, Bang-Bing Shi(石帮兵)2, Xuan Li(李轩)1,†, Huai-Yun Fan(范怀云)2, Chen-Zhan Li(李诚瞻)2, Xiao-Chuan Deng(邓小川)1, Hai-Hui Luo(罗海辉)2, Yu-Dong Wu(吴煜东)2, and Bo Zhang(张波)1
1 School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; 2 State Key Laboratory of Advanced Power Semiconductor Devices, Zhuzhou CRRC Times Semiconductor Company Ltd., Zhuzhou 412001, China
Abstract  In order to investigate the characteristics and mechanisms of subthreshold voltage hysteresis (∆ V th, sub) of 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs), 4H-SiC planar and trench MOSFETs and corresponding P-type planar and trench metal-oxide-semiconductor (MOS) capacitors are fabricated and characterized. Compared with planar MOSFEF, the trench MOSFET shows hardly larger ∆ V th, sub in wide temperature range from 25 °C to 300 °C. When operating temperature range is from 25 °C to 300 °C, the off-state negative V gs of planar and trench MOSFETs should be safely above -4 V and -2 V, respectively, to alleviate the effect of ∆ V th, sub on the normal operation. With the help of P-type planar and trench MOS capacitors, it is confirmed that the obvious ∆ V th, sub of 4H-SiC MOSFET originates from the high density of the hole interface traps between intrinsic Fermi energy level (E i) and valence band (E v). The maximum ∆ V th, sub of trench MOSFET is about twelve times larger than that of planar MOSFET, owing to higher density of interface states (D it) between E i and E v. These research results will be very helpful for the application of 4H-SiC MOSFET and the improvement of ∆ V th, sub of 4H-SiC MOSFET, especially in 4H-SiC trench MOSFET.
Keywords:  4H-SiC MOSFET      subthreshold voltage hysteresis      P-type MOS capacitor      density of interface states  
Received:  08 October 2020      Revised:  30 October 2020      Accepted manuscript online:  15 December 2020
PACS:  85.30.Tv (Field effect devices)  
  43.66.Ed (Auditory fatigue, temporary threshold shift)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  68.35.Dv (Composition, segregation; defects and impurities)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0903203), the National Natural Science Foundation of China (Grant No. 62004033), and China Postdoctoral Science Foundation (Grant No. 2020M683287).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波) Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs 2021 Chin. Phys. B 30 048504

1 Chen Z, Yao Y, Boroyevich D, Ngo K D T, Mattavelli P and Rajashekara K 2014 IEEE Trans. Power Electron. 29 2307
2 She X, Huang A Q and Ozpineci B 2017 IEEE T. Ind. Electron. 64 8193
3 Fabre J, Ladoux P and Piton M 2015 IEEE Trans. Power Electron. 30 4079
4 Molin Q, Kanoun M, Raynaud C and Morel H 2018 Microelectron. Reliab. 88-90 656
5 Asllani B, Castellazzi A, Salvado O A, Fayyaz A, Morel H and Planson D 2019 IEEE International Reliability Physics Symposium, March 31-April 4, 2019, California, USA, pp. 1-6
6 Rescher G, Pobegen G, Aichinger T and Grasser T 2016 IEEE International Electron Devices Meeting, December 3-7, 2016, San Francisco, USA, pp. 10.8.1-10.8.4
7 Aichinger T, Rescher G and Pobegen G 2018 Microelectron. Reliab. 80 68
8 Unger C and Pfost M 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference, November 7-9, 2018, Nottingham, United Kingdom, pp. 1-5
9 Basler T, Heer D, Peters D, Aichinger T and Schoerner R International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, June 5-7, 2018, Nuernberg, Germany, pp. 1-7
10 Unger C and Pfost M 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs, May 13-17, 2018, Chicago, USA, pp. 48-51
11 Hamilton D P, Jennings M R, Perez-Tomas A, Russell S A O, Hindmarsh S A, Fisher C A and Mawby P A 2017 IEEE Trans. Power Electron. 32 7967
12 Cheng L, Agarwal A K, Dhar S, Ryu S H and Palmour J W 2012 J. Electron. Mater. 41 910
13 Chatty K, Banerjee S, Chow T P and Gutmann R J 2002 IEEE Electron. Dev. Lett. 23 330
14 Puschkarsky K, Grasser T, Aichinger T, Gustin W and Reisinger H 2019 IEEE T. Electron Dev. 66 4604
15 Rasinger F, Hauck M, Rescher G, Aichinger T, Weber H B, Krieger M and Pobegen G 2019 Appl. Phys. Lett. 115 152102
16 Puschkarsky K, Reisinger H, Aichinger T, Gustin W and Grasser T 2018 IEEE T. Dev. Mater. Res. 18 144
17 Yano H, Kanafuji N, Osawa A, Hatayama T and Fuyuki T 2015 IEEE T. Electron Dev. 62 324
18 Cooper J, J. A 1997 Phys. Status Solidi A 162 305
[1] Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress
Jianing Guo(郭佳宁), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2021, 30(11): 118102.
[2] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[3] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[4] Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance
Hui-Fang Xu(许会芳), Wen Sun(孙雯), and Na Wang(王娜). Chin. Phys. B, 2021, 30(7): 078503.
[5] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate
Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 058501.
[8] Localized electric-field-enhanced low-light detection by a 2D SnS visible-light photodetector
Hao Wen(文豪), Li Xiong(熊力), Congbing Tan(谭丛兵), Kaimin Zhu(朱凯民), Yong Tang(唐勇), Jinbin Wang(王金斌), and Xiangli Zhong(钟向丽). Chin. Phys. B, 2021, 30(5): 057803.
[9] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[10] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[11] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[12] Device physics and design of FD-SOI JLFET with step-gate-oxide structure to suppress GIDL effect
Bin Wang(王斌), Xin-Long Shi(史鑫龙), Yun-Feng Zhang(张云峰), Yi Chen(陈伊), Hui-Yong Hu(胡辉勇), and Li-Ming Wang(王利明). Chin. Phys. B, 2021, 30(4): 047401.
[13] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[14] Snapback-free shorted anode LIGBT with controlled anode barrier and resistance
Shun Li(李顺), Jin-Sha Zhang(张金沙), Wei-Zhong Chen(陈伟中), Yao Huang(黄垚), Li-Jun He(贺利军), and Yi Huang(黄义). Chin. Phys. B, 2021, 30(2): 028501.
[15] Performance analysis of GaN-based high-electron-mobility transistors with postpassivation plasma treatment
Xing-Ye Zhou(周幸叶), Xin Tan(谭鑫), Yuan-Jie Lv(吕元杰), Guo-Dong Gu(顾国栋), Zhi-Rong Zhang(张志荣), Yan-Min Guo(郭艳敏), Zhi-Hong Feng(冯志红), and Shu-Jun Cai(蔡树军). Chin. Phys. B, 2021, 30(2): 028502.
[3] Feng Shi-de, Ren Rong-cai, Cui Xiao-peng, Ji Zhong-zhen. CORRECTIONS TO THE COLLISION TERM IN THE BGK BOLTZMANN EQUATION[J]. Chin. Phys., 2001, 10(12): 1106 -1109 .
[4] Miao Yuan-xiu, Han Yi-ang, Jing Hui. QUANTUM STATISTICS OF AN ATOM LASER IN THE PRESENCE OF A STRONG INPUT LIGHT[J]. Chin. Phys., 2001, 10(3): 186 -188 .
[5] Tam Hon-Wah, Zhang Yu-Feng, Guo Fu-Kui. A subalgebra of loop algebra ?2 and its applications[J]. Chin. Phys., 2004, 13(2): 132 -138 .
[6] Zhang Hao, Ma Xi-Kui, Yang Yu, Xu Cui-Dong. Generalized synchronization of hyperchaos and chaos using active backstepping design[J]. Chin. Phys., 2005, 14(1): 86 -94 .
[7] Mei Feng-Xiang, Xu Xue-Jun. Form invariances and Lutzky conserved quantities for Lagrange systems[J]. Chin. Phys., 2005, 14(3): 449 -451 .
[8] You Jun, Li Jia-Hua, Xie Xiao-Tao. Proposal for quantum entanglement of six photons[J]. Chin. Phys., 2005, 14(7): 1329 -1333 .
[9] Song Ning-Fang, Zhang Chun-Xi, Jin Jing. Phenomena of optic-bound effect on fibre optic gyro[J]. Chin. Phys., 2007, 16(3): 735 -739 .
[10] Chen Zhi-Hua, Lin Xiu-Min, Chen Mei-Ying, Du Qian-Hua, Lin Gong-Wei. Implementing entanglement teleportation via adiabatic passage[J]. Chin. Phys., 2007, 16(5): 1339 -1343 .