Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 026103    DOI: 10.1088/1674-1056/abd2a9
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles

Sk Irsad Ali1, Anjan Das2, Apoorva Agrawal3, Shubharaj Mukherjee3, Maudud Ahmed3, P M G Nambissan3, Samiran Mandal4, and Atis Chandra Mandal1,
1 Department of Physics, University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India; 2 Department of Physics, A.P.C. Roy Government College, Siliguri, Darjeeling 734010, West Bengal, India; 3 Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; 4 Department of Physics, Government General Degree College at Pedong, Kalimpong 734311, West Bengal, India
Abstract  Nanocrystalline samples of highly pure lead oxide were prepared by the sol-gel route of synthesis. X-ray diffraction and transmission electron microscopic techniques confirmed the nanocrystallinity of the samples, and the average sizes of the crystallites were found within 20 nm to 35 nm. The nanocrystallites exhibited specific anomalous properties, among which a prominent one is the increased lattice parameters and unit cell volumes. The optical band gaps also increased when the nanocrystallites became smaller in size. The latter aspect is attributable to the onset of quantum confinement effects, as seen in a few other metal oxide nanoparticles. Positron annihilation was employed to study the vacancy type defects, which were abundant in the samples and played crucial roles in modulating their properties. The defect concentrations were significantly larger in the samples of smaller crystallite sizes. The results suggested the feasibility of tailoring the properties of lead oxide nanocrystallites for technological applications, such as using lead oxide nanoparticles in batteries for better performance in discharge rate and resistance. It also provided the physical insight into the structural build-up process when crystallites were formed with a finite number of atoms, whose distributions were governed by the site stabilization energy.
Keywords:  lead oxide      nanocrystals      positron annihilation      sol-gel processes  
Received:  21 August 2020      Revised:  06 December 2020      Accepted manuscript online:  11 December 2020
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  61.82.Fk (Semiconductors)  
  61.72.J- (Point defects and defect clusters)  
  78.70.Bj (Positron annihilation)  
Fund: Project supported by the University Grants Commission (UGC), New Delhi, India, for the departmental CAS scheme (No. F.530/5/CAS/2011(SAP-I)) and from the Department of Science and Technology (DST), Govt. of India under FIST (Fund for Improvement in Science & Technology) Program (Grant No. SR/FST/PS-II-001/2011).
Corresponding Authors:  Corresponding author. E-mail: mandal\textunderscore atis@yahoo.co.in   

Cite this article: 

Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles 2021 Chin. Phys. B 30 026103

1 Mu S J, Su Y C, Xiao L H, Liu S D, Hu T and Tang H B 2013 Chin. Phys. Lett. 30 096101
2 Jiang M Y, Zhu Z J, Chen C K, Li X and Hu X J 2019 Acta Phys. Sin. 68 148101 (in Chinese)
3 Cheng Z D, Zhu J and Tang Z 2011 Chin. Phys. Lett. 28 037501
4 Liu Y P, Yan Z J, Li Z G, Li Q T and Wang Y Y 2010 Chin. Phys. Lett. 27 074205
5 Wu J L, Dou Y J, Zhang J F, Wang H R and Yang X Y 2020 Acta Phys. Sin. 69 018101 (in Chinese)
6 Yan X W, Wang Z J, Wang B Y, Sun Z Y, Zhang C X, Han Q Y, Qi J X, Dong J and Gao W 2019 Acta Phys. Sin. 68 174204 (in Chinese)
7 Bisen D P, Sharma R, Brahme N and Tamrakar R2009 Chalcogenide Lett. 6 427
8 Hongbo G, Pei W, Biying Z, Yuexiang Z and Youchang X 2007 Front. Chem. China. 2 204
9 Keating C D and Natan M 2003 Adv. Mater. 15 451
10 Li S Q, Fu X Q, Hu B, Deng J J and Chen L 2009 Chin. Phys. Lett. 26 116104
11 Wang H C and Li Z P 2019 Acta Phys. Sin. 68 144101 (in Chinese)
12 Fang Z N, Xie J P, Feng Y X, Zhang C H, Yang B and Ye G X 2008 Chin. Phys. Lett. 25 3338
13 Zhou J H, Tao R Z, Hu Z B, Zhong M C, Wang Z Q, Cai J and Li Y M 2009 Chin. Phys. Lett. 26 068701
14 Gong X F, Wang Y W and Ning X J 2008 Chin. Phys. Lett. 25 468
15 Wang H Q, Zhou Y H and Xu Y 2007 Chin. Phys. Lett. 24 3570
16 Shen Z, Song P, Qiao B, Cao J, Bai Q, Song D, Xu Z, Zhao S, Zhang G and Wu Y 2019 Chin. Phys. B 28 086102
17 Xing G C, Zhang M L, Sun T H, Fu Y W, HuangY L, Shao J, Liu J R, Wang F and Zhang D M 2018 Chin. Phys. B 27 114218
18 Xi G, Peng Y, Xu L, Zhang M, Yu W and Qian Y 2004 Inorg. Chem. Commun. 7 607
19 Sharon M and Veluchamy P 1994 J. Electroanal. Chem. 365 179
20 Karami H, Karami M A and Haghdar S 2008 Mater. Res. Bull. 43 3054
21 Barriga C, Maffi S, Bicelli L P and Malitesta C 1991 J. Power Sources 34 353
22 Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 295 2425
23 Duhan S and Aghamkar P 2009 Chin. Phys. Lett. 26 016106
24 Hashemi L, Morsali A and Retailleau P 2011 Inorg. Chim. Acta. 367 207
25 Zhou Q, Liu X, Liu L, Li Y, Jiang Z and Zhao D 2005 Chem. Lett. 34 1226
26 Aboutorabi L and Morsali A 2011 Ultrason. Sonochem. 18 407
27 Konstantinov K, Ng S H, Wang J Z, Wang G X, Wexler D and Liu H K 2006 J. Power Sources 159 241
28 Raju V S and Murthy S R 2006 J. Mater. Sci. 41 1475
29 Zheng X S and Li J H 2010 J. Sol-Gel Sci. Technol. 54 174
30 Gnanam S and Rajendran V2014 J. Nanoparticles 83931 1
31 Badar N, Chayed N F, Rusdi R, Kamarudin N and Kamarulzaman N 2012 Adv. Mater. Res. 545 157
32 Das A, Mandal A C and Nambissan P M G 2015 Chin. Phys. B 24 046102.
33 Addala S, Bouhdjer L, Chala A, Bouhdjer A, Halimi O, Boudine B and Sebais M 2013 Chin. Phys. B 22 098103
34 Manuel Diehm P, \'Agoston P and Albe K 2012 ChemPhysChem (Special Issue: Nanomaterials) 13 2443
35 Dutta S, Chattopadhyay S, Sarkar A, Chakrabarti M, Sanyal D and Jana D 2009 Prog. Mater. Sci. 54 89
36 Nafees M, Ikram M and Ali S 2017 Appl. Nanosci. 7 399
37 Gan Z, Zhou W and Meng M 2018 Chin. Phys. B 27 127804
38 Kar S, Biswas S, Chaudhuri S and Nambissan P M G 2005 Phys. Rev. B 72 075338
39 Das S, Ghosal T and Nambissan P M G 2009 Phys. Stat. Sol. C 6 2569
40 Das A, Mandal A C, Roy S, Prashanth P, Ahamed S I, Kar S, Prasad M S and Nambissan P M G 2016 Physica E 83 389
41 Das A, Mandal A C, Roy S and Nambissan P M G 2015 J. Exp. Nanosci. 10 622
42 Long G, Sabalo K, Alsaidi R, Beattie M, Chaudhry B, Khan M, Uddin J and Sadoqi M 2017 AIMS Materials Science 4 515
43 Hyun B R, Marus M, Zhong H, Li D, Liu H, Xie Y, Koh W K, Xu B, Liu Y and Sun X W 2020 Chin. Phys. B 29 018503
44 Liu H, Zhong H, Zheng F, Xie Y, Li D, Wu D, Zhou Z, Sun X W and Wang K 2019 Chin. Phys. B 28 128504
45 Zhang X Y, Ma Y X, Xu C L, Ding J, Quan H J, Hou Z Y, Shi G, Qin N and Gao D L 2018 Acta Phys. Sin. 67 183301 (in Chinese)
46 Arulmozhi K T and Mythilli N 2013 AIP Advances 3 122122
47 Lee D H and Condrate S R 1999 J. Mater. Sci. 34 139
48 Olsen J V, Kirkegaard P, Pedersen N J and Eldrup M 2007 Phys. Stat. Sol. C 4 4004
49 Siegel R W 1980 Ann. Rev. Mater. Sci. 10 393
50 West R N 1973 Adv. in Phys. 22 263
51 Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B and Lynn K G 1996 Phys. Rev. Lett. 77 2097
52 Hu J, Shi Y, Zhang Z, Zhi R, Yang S and Zou B 2019 Chin. Phys. B 28 020701
53 Karami H, Karimi M A, Haghdar S, Sadeghi A, Mir-Ghasemi R and Mahdi-Khani S 2008 Mat. Chem. Phys. 108 337
54 Alaei S and Razzazi V 2017 Chin. Phys. B 26 116501
[1] Growth and aggregation of Cu nanocrystals on ionic liquid surfaces
Jia-Wei Shen(沈佳伟), Xun-Heng Ye(叶迅亨), Zhi-Long Bao(鲍志龙), Lu Li(李璐), Bo Yang(杨波), Xiang-Ming Tao(陶向明), Gao-Xiang Ye(叶高翔). Chin. Phys. B, 2020, 29(6): 066801.
[2] A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔). Chin. Phys. B, 2020, 29(3): 038101.
[3] Photoluminescence changes of C70 nanotubes induced by laser irradiation
Han-Da Wang(王汉达), De-Di Liu(刘德弟)†, Yang-Yang He(何洋洋), Hong-Sheng Jia(贾洪声)‡, Ran Liu(刘然), Bo Liu(刘波), Nai-Sen Yu(于乃森), and Zhen-Yi Zhang(张振翼). Chin. Phys. B, 2020, 29(10): 104209.
[4] Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots
Jinming Hu(胡津铭), Yuansheng Shi(史源盛), Zhenheng Zhang(张珍衡), Ruonan Zhi(智若楠), Shengyi Yang(杨盛谊), Bingsuo Zou(邹炳锁). Chin. Phys. B, 2019, 28(2): 020701.
[5] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义). Chin. Phys. B, 2018, 27(2): 027805.
[6] Increase of photoluminescence blinking frequency of 3C-SiC nanocrystals with excitation power
Zhixing Gan(甘志星), Weiping Zhou(周卫平), Ming Meng(孟明). Chin. Phys. B, 2018, 27(12): 127804.
[7] Polymer waveguide thermo-optical switch with loss compensation based on NaYF4: 18% Yb3+, 2% Er3+ nanocrystals
Gui-Chao Xing(邢桂超), Mei-Ling Zhang(张美玲), Tong-He Sun(孙潼鹤), Yue-Wu Fu(符越吾), Ya-Li Huang(黄雅莉), Jian Shao(邵健), Jing-Rong Liu(刘静蓉), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2018, 27(11): 114218.
[8] Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices
Jie Yu(于杰), Kun-ji Chen(陈坤基), Zhong-yuan Ma(马忠元), Xin-xin Zhang(张鑫鑫), Xiao-fan Jiang(江小帆), Yang-qing Wu(吴仰晴), Xin-fan Huang(黄信凡), Shunri Oda. Chin. Phys. B, 2016, 25(9): 097304.
[9] Configuration interaction studies on the spectroscopic properties of PbO including spin—orbit coupling
Wang Luo(罗旺), Rui Li(李瑞), Zhiqiang Gai(盖志强), RuiBo Ai(艾瑞波), Hongmin Zhang(张宏民), Xiaomei Zhang(张晓美), Bing Yan(闫冰). Chin. Phys. B, 2016, 25(7): 073101.
[10] Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure
Tong Xiao-Lin (佟晓林), Xia Xiao-Zhi (夏晓智), Li Qing-Xia (李青侠). Chin. Phys. B, 2015, 24(6): 067306.
[11] Effect of size on momentum distribution of electrons around vacancies in NiO nanoparticles
Anjan Das, Atis Chandra Mandal, P. M. G. Nambissan. Chin. Phys. B, 2015, 24(4): 046102.
[12] Exploring positron characteristics utilizing two new positron-electron correlation schemes based on multiple electronic structure calculation methods
Zhang Wen-Shuai (张文帅), Gu Bing-Chuan (谷冰川), Han Xiao-Xi (韩小溪), Liu Jian-Dang (刘建党), Ye Bang-Jiao (叶邦角). Chin. Phys. B, 2015, 24(10): 107804.
[13] Different charging behaviors between electrons and holes in Si nanocrystals embedded in SiNx matrix by the influence of near-interface oxide traps
Fang Zhong-Hui (方忠慧), Jiang Xiao-Fan (江小帆), Chen Kun-Ji (陈坤基), Wang Yue-Fei (王越飞), Li Wei (李伟), Xu Jun (徐骏). Chin. Phys. B, 2015, 24(1): 017305.
[14] Quantum confinement and surface chemistry of 0.8-1.6 nm hydrosilylated silicon nanocrystals
Pi Xiao-Dong (皮孝东), Wang Rong (王蓉), Yang De-Ren (杨德仁). Chin. Phys. B, 2014, 23(7): 076102.
[15] Fabrication and temperature-dependent photoluminescence spectra of Zn-Cu-In-S quaternary nanocrystals
Liu Xiao-Juan (刘晓娟), Zhang Xiao-Song (张晓松), Li Lan (李岚), Wang Xue-Liang (王雪亮), Yuan Lin-Lin (苑琳琳). Chin. Phys. B, 2014, 23(11): 117804.
No Suggested Reading articles found!