Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 037801    DOI: 10.1088/1674-1056/abd168
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Plasmonic properties of graphene on uniaxially anisotropic substrates

Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏)†, and Weihua Wang(王伟华)‡
1 School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
Abstract  Most of the current graphene plasmonic researches are based on the substrates with isotropic dielectric constant such as silicon. In this work, we investigate optical properties of graphene nanoribbon arrays placed on a uniaxially anisotropic substrate, where the anisotropy provides an additional freedom to tune the behaviors of graphene plasmons, and its effect can be described by a simple effective formula. In practice, the substrates of semi-infinite and finite thickness are discussed by using both the formula and full wave simulations. Particularly, the dielectric constants $\varepsilon_ \parallel $ and $\varepsilon_ \bot $ approaching zero are intensively studied, which show different impacts on the transverse magnetic (TM) surface modes. In reality, the hexagonal boron nitride (hBN) can be chosen as the anisotropic substrate, which is also a hyperbolic material in nature.
Keywords:  graphene      plasmonics      anisotropy      hexagonal boron nitride  
Received:  14 September 2020      Revised:  19 November 2020      Accepted manuscript online:  08 December 2020
PACS:  78.68.Wj  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604382 and 11574140) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160236).
Corresponding Authors:  Corresponding author. E-mail: xpshen@cumt.edu.cn Corresponding author. E-mail: wh.wang@outlook.com   

Cite this article: 

Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华) Plasmonic properties of graphene on uniaxially anisotropic substrates 2021 Chin. Phys. B 30 037801

1 Novoselov K S, Geim A K, Morozov S V, Jian D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
2 Wang W H and Kinaret J M 2013 Phys. Rev. B 87 195424
3 Bao Z Y, Wang J C, Hu Z D, Balmakou A, Khakhomov S, Tang Y and Zhang C L 2020 Opt. Express 27 31435
4 Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
5 Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L and Basov D N 2008 Nat. Phys. 4 532
6 Wang W H, Apell S P and Kinaret J M 2011 Phys. Rev. B 84 085423
7 Aurel B, Yuan L L, Piotr M, Roche K J and Yongle Y 2011 Science 332 1288
8 He X Y, Lin F T, Liu F and Shi W Z 2020 J. Phys. D 53 155105
9 Peng J, He X Y, Shi C Y Y, Leng J, Lin F T, Liu F, Zhang H and Shi W Z 2020 Physica E 124 114309
10 Wang X S, Xia X S, Wang J C, Zhang F, Hu Z D and Liu C 2015 J. Appl. Phys. 118 013101
11 Bao Q L, Zhang H, Wang B, Ni Z H, Candy H Y X L, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411
12 Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A and Shen Y R 2011 Nat. Nanotech. 6 630
13 Duan J H, Chen R K and Chen J N 2017 Chin. Phys. B 26 117802
14 Chen J N, Badioli M, Alonso G P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, De Abajo F J G, Hillenbrand R and Koppens F H L 2012 Nature 487 77
15 Fei Z, Rodin A S, Andreev G O and Bao W 2012 Nature 487 82
16 Sukosin T, Koppens F H L and Javier F G D A 2012 Phys. Rev. Lett. 108 047401
17 Nikitin A Y, Alonso G P, V\'elez S, Mastel S, Centeno A, Pesquera A, Zurutuza A, Casanova F, Hueso L E, Koppens F H L and Hillenbrand R 2016 Nat. Photon. 10 239
18 Woessner A, Lundeberg M B, Gao Y D, Principi A, Alonso G P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R and Koppens F H L 2015 Nat. Mater. 14 421
19 Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F and Basov D N 2012 Nature 487 82
20 Kang S W, Jiao N F, Han K, Shen X P and Wang W H 2019 Physica B 563 36
21 He X Y, Lin F T, Liu F and Zhang H 2020 Nanomaterials 10 39
22 Ning R X, Liu S B, Zhang H F, Kong X K, Borui B and Bao J 2014 J. Opt. 16 125108
23 Poddubny A, Iorsh I and Belov P 2013 Nat. Photon. 7 948
24 Luo C Y, Johnson S G, Joannopoulos J D and Pendry J B 2002 Phys. Rev. B 65 201104
25 Nikitin A Y, Yoxall E and Schnell M 2016 ACS Photon. 3 924
26 Kabashin A V, Evans P and Pastkovsky S 2009 Nat. Mater. 8 867
27 Smith D R and Schurig D 2003 Phys. Rev. Lett. 90 077405
28 Jacob Z, Smolyaninov I I and Narimaniv E E 2012 Appl. Phys. Lett. 100 181105
29 Podolskiy V A and Narimanov E E 2005 Phys. Rev. B 71 201101
30 Liu Z, Lee H and Xiong Y 2007 Science 315 1686
31 Noginov M A, Li H and Barnakov Y A 2010 Opt. Lett. 35 1863
32 Dai S, Ma Q and Liu M K 2015 Nat. Nanotech. 10 682
33 Caldwell J D, Vurgaftman I and Tischler J G 2016 Nat. Nanotech. 11 9
34 Wang W H, Apell S P and Kinaret J M 2012 Phys. Rev. B 86 125450
35 Alcaraz D, Nanot S, Dias E J C, Epstein I, Peng C, Efetov D K, Lundeberg M B, Parret R, Osmond J, Hong J Y, Kong J, Englund D R, Peres N M and Koppens F H L 2018 Science 360 291
36 Epstein I, Alcaraz D, Huang Z Q, Pusapati V V, Hugonin J P, Kumar A, Deputy X M, Khodkov T, Rappoport T G, Hong J Y, Peres N M R, Kong J, Smith D R and Koppens F H L 2020 Science 368 1219
37 Wang Z H, Wang Y B and Yin J, et al. 2019 Sci. Adv. 5 eaay8897
38 Huang P, Riccardi E, Messelot S, Graef H, Valmorra F, Tignon J, Taniguchi T, Watanabe K, Dhillon S, Placais B, Ferreira R and Mangeney J 2020 Nat. Commun. 11 863
39 Shah S, Lin X, Shen L, Renuka M, Zhang B L and Chen H S 2018 Phys. Rev. Appl. 10 034025
40 Moon K and Park S Y 2019 Phys. Rev. Appl. 11 034074
41 Zhao Q M, Wang T B, Zhang D J, Liu W X, Yu T B, Liao Q H and Liu N H 2018 Chin. Phys. B 27 094401
42 Chen T and Lu X H 2015 Chin. Phys. Lett. 32 024204
43 Wang W H, Christensen T, Jauho A P, Kristian S T, Wubs M and Mortensen N A 2015 Sci. Rep. 5 9535
44 George W H 2008 J. Appl. Phys. 104 084314
45 Zhu B F, Ren G B, Zheng S W, Lin Z and Jian S S 2013 Opt. Express 21 17089
46 Thongrattanasiri S, Manjavacas A,Abajo F J G D 2012 ACS Nano 6 1766
47 Jablan M, Buljan H and Soljacic M 2009 Phys. Rev. B 80 245435
48 Duppen B V2016 Plasmonics in graphene and related materials (Ph. D. Dissertation) (Antwerpen: University of Antwerpen)(in Belgium)
49 Prashant S, Jonathan A and Zubin J 2014 Nano converg. 1 14
50 Wang W H, Xiao S S and Mortensen N A 2016 Phys. Rev. B 93 165407
51 Nikitin A Y, Low T and Martin M L 2014 Phys. Rev. B 90 041407
52 Liu Z K, Xie Y N, Geng L, Pan D K and Song P 2016 Chin. Phys. Lett. 33 027802
53 Abdelwaheb O, Agns M and Vincent P 2013 Opt. Lett. 38 2092
54 Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Nano Lett. 15 3172
55 Dai S, Ma Q, Andersen T, Mcleod A S, Fei Z, Liu M K, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo H P, Fogler M M and Basov D N 2015 Nat. Commun. 6 6963
56 Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotech. 5 722
57 Wei V B, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M and Atwater H 2014 Nano Lett. 14 3876
58 Dai S, Fei Z, Ma Q, Rodin A S, Wagner M, Mcleod A S, Liu M K, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Castro Neto A H, Zettl A, Keilmann F, Jarillo H P, Fogler M M and Basov D N 2014 Science 343 1125
[1] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[2] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[3] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[4] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[5] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[6] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[7] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[8] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[9] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[10] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[11] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[12] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[13] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[14] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[15] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
No Suggested Reading articles found!