Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028506    DOI: 10.1088/1674-1056/abcf9d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers

Runze Li(李润泽)1,2, Yucai Li(李予才)1,2, Yu Sheng(盛宇)1, and Kaiyou Wang(王开友)1,2,3,4,
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 4 Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We demonstrate that radio frequency (RF) magnetron sputtering technique can modify the perpendicular magnetic anisotropy (PMA) of Pt/Co/normal metal (NM) thin films. Influence of ion irradiation during RF magnetron sputtering should not be neglected and it can weaken PMA of the deposited magnetic films. The magnitude of this influence can be controlled by tuning RF magnetron sputtering deposition conditions and the upper NM layer thickness. According to the stopping and range of ions in matter (SRIM) simulation results, defects such as displacement atoms and vacancies in the deposited film will increase after the RF magnetron sputtering, which can account for the weakness of PMA. The amplitude changes of the Hall resistance and the threshold current intensity of spin orbit torque (SOT) induced magnetization switching also can be modified. Our study could be useful for controlling magnetic properties of PMA films and designing new type of SOT-based spintronic devices.
Keywords:  perpendicular magnetic anisotropy      RF magnetron sputtering      ion irradiation      spin orbit torque  
Received:  12 October 2020      Revised:  01 November 2020      Accepted manuscript online:  02 December 2020
PACS:  85.70.-w (Magnetic devices)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  79.20.-m (Impact phenomena (including electron spectra and sputtering))  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0405700), the National Natural Science Foundation of China (Grant Nos. 11474272 and 61774144), Beijing Natural Science Foundation Key Program, China (Grant No. Z190007), and the Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC020, XDB44000000, and XDB28000000).
Corresponding Authors:  Corresponding author. E-mail: kywang@semi.ac.cn   

Cite this article: 

Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友) RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers 2021 Chin. Phys. B 30 028506

1 Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
2 Li Y, Edmonds K W, Liu X, Zheng H and Wang K 2019 Adv. Quantum. Technol. 2 1800052
3 Lau Y C, Betto D, Rode K, Coey J M and Stamenov P 2016 Nat. Nanotechnol. 11 758
4 Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
5 Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H and Wang K 2017 Nat. Mater. 16 712
6 Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
7 Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H and Wang K 2020 Adv. Mater. 32 1907929
8 Chuang T C, Pai C F and Huang S Y 2019 Phys. Rev. A 11 061005
9 Yun S J, Lee K J and Lim S H 2017 Sci. Rep. 7 15314
10 Rodmacq B, Manchon A, Ducruet C, Auffret S and Dieny B 2009 Phys. Rev. B 79 024423
11 Maziewski A, Mazalski P, Kurant Z, Liedke M O, McCord J, Fassbender J, Ferre J, Mougin A, Wawro A, Baczewski L T, Rogalev A, Wilhelm F and Gemming T 2012 Phys. Rev. B 85 054427
12 Sakamaki M, Amemiya K, Liedke M O, Fassbender J, Mazalski P, Sveklo I and Maziewski A 2012 Phys. Rev. B 86 024418
13 Mazalski P, Kurant Z, Maziewski A, Liedke M O, Fassbender J, Baczewski L T and Wawro A 2013 J. Appl. Phys. 113 17C109
14 Devolder T 2000 Phys. Rev. B 62 5794
15 Devolder T, Barisic I, Eimer S, Garcia K, Adam J P, Ockert B and Ravelosona D 2013 J. Appl. Phys. 113 203912
16 Dieny B and Chshiev M 2017 Rev. Mod. Phys. 89 025008
17 Li X, Yin S, Liu Y, Zhang D, Xu X, Miao J and Jiang Y 2011 Appl. Phys. E 4 043006
18 Huang M, Hameiri Z, Aberle A G and Mueller T 2015 Vacuum 119 68
19 Dong R N, Ferblantier G, Kalfioui M A, Boyer M and Foucaran A 2003 J. Crys. Grow. 225 130
20 Yun J, Zuo Y, Mao J, Chang M, Zhang S, Liu J and Xi L 2019 Appl. Phys. Lett. 115 032404
21 James F Z, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods. Phys. Res. B 268 1818
22 Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S and Garner F A 2013 Nucl. Instrum. Methods. Phys. Res. B 310 75
23 Koide T, Nakajima N, Shidara T, Miyauchi H, Fukutani H, Fujimori A, Iio K, Katayama T, Nyvlt M and Suzuki Y 1998 Phys. Rev. Lett. 81 5229
24 Fassbender J and McCord J 2008 J. Magn. Magn. Mater 320 579
25 Gambino R J, Ziegler J and Cuomo J J 1974 Appl. Phys. Lett. 24 99
26 Gao X S, Adeyeye A O and Ross C A 2008 J. Appl. Phys. 103 063906
27 Yang M, Cai K, Ju H, Edmonds K W, Yang G, Liu S, Li B, Zhang B, Sheng Y, Wang S, Ji Y and Wang K 2016 Sci Rep 6 20778
28 Shepley P M, Rushforth A W, Wang M, Burnell G and Moore T A 2015 Sci. Rep. 5 7921
[1] Thickness-dependent magnetic properties in Pt/[Co/Ni]n} multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军), Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[2] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[3] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[4] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[5] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[6] Spin orbit torques in Pt-based heterostructures with van der Waals interface
Qian Chen(陈倩), Weiming Lv(吕伟明), Shangkun Li(李尚坤), Wenxing Lv(吕文星), Jialin Cai(蔡佳林), Yonghui Zhu(朱永慧), Jiachen Wang(王佳晨), Rongxin Li(李荣鑫), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2021, 30(9): 097506.
[7] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[8] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[9] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
Shuaishuai Feng(冯帅帅), Shasha Lv(吕沙沙), Liang Chen(陈良), and Zhengcao Li(李正操). Chin. Phys. B, 2021, 30(5): 056105.
[10] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
[11] Thermal desorption characteristic of helium ion irradiated nickel-base alloy
Shasha Lv(吕沙沙), Rui Zhu(朱睿), Yumeng Zhao(赵雨梦), Mingyang Li(李明阳), Guojing Wang(王国景), Menglin Qiu(仇猛淋), Bin Liao(廖斌), Qingsong Hua(华青松), Jianping Cheng(程建平), Zhengcao Li(李正操). Chin. Phys. B, 2020, 29(4): 040704.
[12] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[13] Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses
Sheng-Xia Zhang(张胜霞), Jie Liu(刘杰), Hua Xie(谢华), Li-Jun Xu(徐丽君), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Wen-Si Ai(艾文思), Peng-Fei Zhai(翟鹏飞). Chin. Phys. B, 2019, 28(11): 116102.
[14] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[15] Structural modification in swift heavy ion irradiated muscovite mica
Sheng-Xia Zhang(张胜霞), Jie Liu(刘杰), Jian Zeng(曾健), Pei-Pei Hu(胡培培), Peng-Fei Zhai(翟鹏飞). Chin. Phys. B, 2017, 26(10): 106102.
No Suggested Reading articles found!