Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047501    DOI: 10.1088/1674-1056/abcf9c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic anisotropy in 5d transition metal-porphyrin molecules

Yan-Wen Zhang(张岩文)1, Gui-Xian Ge(葛桂贤)1,†, Hai-Bin Sun(孙海斌)2, Jue-Ming Yang(杨觉明)1, Hong-Xia Yan(闫红霞)1, Long Zhou(周龙)1, Jian-Guo Wan(万建国)3, and Guang-Hou Wang(王广厚)3
1 Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Shihezi\/ 832003, China; 2 Key Laboratory of Advanced Micro/Nano Functional Materials, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang\/ 464000, China; 3 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing\/ 210093, China
Abstract  Single molecule magnets (SMMs) with large magnetic anisotropy energy (MAE) have great potential applications in magnetic recording. Using the first-principles calculations, we investigate the MAE of 5d transition metal-porphyrin-based SMMs by using the PBE and PBE+U with different U values, respectively. The results indicate that W-P, Re-P, Os-P, and Ir-P possess the considerably large MAE among 5d TM-P SMMs. Furthermore, the MAE of 5d TM-P can be facilely manipulated by tensile strain. The reduction of the absolute value of MAE for Ir-P molecule caused by tensile strain makes it easier to implement the writing operation. The decreasing of the occupation number of minority-spin channels of Ir-dx2-y2 orbital leads the MAE to decrease when the tensile strain increases.
Keywords:  the first principle calculations      single molecule magnets      magnetic anisotropy  
Received:  17 October 2020      Revised:  27 November 2020      Accepted manuscript online:  02 December 2020
PACS:  75.30.Gw (Magnetic anisotropy)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21403144, 11464038, 11134005, and 51472113) and the National Key Project for Basic Research of China (Grant Nos. 2013CB922103 and 2015CB921203).
Corresponding Authors:  Corresponding author. E-mail: geguixian@126.com   

Cite this article: 

Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚) Magnetic anisotropy in 5d transition metal-porphyrin molecules 2021 Chin. Phys. B 30 047501

1 Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179
2 Ardavan A and Blundell S J 2009 J. Mater. Chem. 19 1754
3 Leuenberger M N and Loss D 2001 Nature 410 789
4 Stamp P C E and Gaita-Arino A 2009 J. Mater. Chem. 19 1718
5 Rocha A R, Garc\'ía-suàrez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S 2005 Nat. Mater. 4 335
6 Coronado E and Epsetin A J 2009 J. Mater. Chem. 19 1670
7 Zhang Q Y, Cui H, Tian C L, Chen H, Wang J Z and Yuan H K 2019 J. Alloys Compd. 773 327
8 Han X C, Cui H, Liu B, Tian C L, Wang J Z, Chen H and Yuan H K 2018 Sci. Rep. 8 9429
9 Li C, Zhang S B, Jin W, Lefkids G and Hübner W 2014 Phys. Rev. B 89 184404
10 Blundell S J and Pratt F L2004 J. Phys.: Condens. Matter 16 R771
11 Hu J and Wu R Q 2013 Phys. Rev. Lett. 110 097202
12 Annese E, Casolari F, Fujii J and Rossi G 2013 Phys. Rev. B 87 054420
13 Wang J H, Shi Y S, Cao J X and Wu R Q 2009 Appl. Phys. Lett. 94 122502
14 Lottner C 2004 Cancer Lett. 203 171
15 Barth J V, Costantini G and Kern K 2005 Nature 437 671
16 Yokoyama T, Yokoyama S, Kamikado T, Okuno Y and Mashiko S 2001 Nature 413 619
17 Roquelet C, Garrot D, Lauret J S, Voisin C, Alain-Rizzo V, Roussignol Ph, Delaire J A and Deleporte E 2010 Appl. Phys. Lett. 97 141918
18 Gupta J, Vijayan C, Maurya S K and Goswami D 2011 J. Appl. Phys. 109 113101
19 Roquelet C, Vialla F, Diederichs C, et al.2012 ACS Nano 6 8796
20 Zhong Q, Diev V V, Roberts S T, et al.2013 ACS Nano 7 3466
21 Panchmatia P M, Sanyal B and Oppeneer P M 2008 Chem. Phys. 343 47
22 Bernien M, Xu X, Miguel J, et al.2007 Phys. Rev. B 76 214406
23 Chiba D, Nakatani Y, Matsukura F and Ohno H 2010 Appl. Phys. Lett. 96 192506
24 Fechner M, Zhan P, Ostanin S, Bibes M and Mertig I 2012 Phys. Rev. Lett. 108 197206
25 Seki T, Kohda M, Nitta J and Takanashi K 2011 Appl. Phys. Lett. 98 212505
26 Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 87501
27 Zhao Q, He X X, Morvan F J, et al.2020 Chin. Phys. 29 037501
28 Hu J and Wu R Q2015 Phys. Chem. Chem. Phys. 7 39
29 Moon S J, Jin H, Kim K W, et al.2008 Phys. Rev. Lett. 101 226402
30 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
31 Hobbs D, Kresse G and Hafner J 2000 Phys. Rev. B 62 11556
32 Neugebauer J and Scheffer M 1992 Phys. Rev. B 46 16067
33 Charap S H, Lu P L and He Y J 1997 IEEE Trans. Magn. 33 978
34 Mannini M, Pineider F, Sainctavit P, et al.2009 Nat. Mater. 8 194
35 He K H and Chen J S 2012 J. Appl. Phys. 111 07
36 Wang D S, Wu R Q and Freeman A J 1993 Phys. Rev. B 47 14932
37 Bruno P 1989 Phys. Rev. B 39 865
38 Van Der Laan G 1998 J. Phys.: Condens. Matter 10 3239
39 Van Vleck J H 1937 Phys. Rev. 52 1178
40 Frisch M J, Trucks G W, Schlegel H B, et al.2009 Gaussian, Inc. Wallingford CT
[1] Thickness-dependent magnetic properties in Pt/[Co/Ni]n} multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军), Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[2] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[3] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[4] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[5] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[6] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[7] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[8] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[9] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[10] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[11] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[12] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
[13] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
[14] Influence of thickness on current-induced magnetization switching in L10-FePt single layer
Shi-Qi Zheng(郑诗琪), Kang-Kang Meng(孟康康), Zhen-Guo Fu(付振国), Ji-Kun Chen(陈吉堃), Jun Miao(苗君), Xiao-Guang Xu(徐晓光), and Yong Jiang(姜勇). Chin. Phys. B, 2021, 30(10): 107101.
[15] Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2
Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明). Chin. Phys. B, 2021, 30(10): 107504.
No Suggested Reading articles found!