Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018104    DOI: 10.1088/1674-1056/abcf9b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating

Xiaoxi Qiao(乔小溪)†, Tongling Xia(夏同领)†, and Ping Chen(陈平)‡
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  High-speed laser cladding technology, a kind of surface technology to improve the wear-resistance and corrosion-resistance of mechanical parts, has the characterizations of fast scan speed, high powder utilization rate, and high cladding efficiency. However, its thermal-stress evolution process is very complex, which has a great influence on the residual stress and deformation. In the paper, the numerical models for the high-speed laser cladding coatings with overlap ratios of 10%, 30%, and 50% are developed to investigate the influence rules of overlap ratio on the thermal-stress evolution, as well as the residual stresses and deformations. Results show that the heat accumulation can reheat and preheat the adjacent track coating and substrate, resulting in stress release of the previous track coating and decreased longitudinal stress peak of the next track coating. With the overlap ratio increasing, the heat accumulation and the corresponding maximum residual stress position tend to locate in the center of the cladding coating, where the coating has a high crack susceptibility. For a small overlap ratio of 10%, there are abrupt stress changes from tensile stress to compressive stress at the lap joint, due to insufficient input energy in the position. Increasing the overlap ratio can alleviate the abrupt stress change and reduce the residual deformation but increase the average residual stress and enlarge the hardening depth. This study reveals the mechanism of thermal-stress evolution, and provides a theoretical basis for improving the coating quality.
Keywords:  high-speed laser cladding      overlap ratio      thermal-stress evolution      residual stress and deformation      numerical simulation  
Received:  25 September 2020      Revised:  03 November 2020      Accepted manuscript online:  02 December 2020
PACS:  81.16.Mk (Laser-assisted deposition)  
  75.40.Mg (Numerical simulation studies)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFC0810500), the National Natural Science Foundation of China (Grant No. 51975042), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-19-004A3).
Corresponding Authors:  These authors contributed equally to this work. \raisebox\ht\strutbox \hypertargetcauthor Corresponding author. E-mail: chenp@ustb.edu.cn   

Cite this article: 

Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平) Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating 2021 Chin. Phys. B 30 018104

1 Raghuram H, Katsich C, Pichelbauer K, Koschatzky K, Gachot C and Cihak-Bayr U 2019 Surf. Coatings Technol. 377 124897
2 Tamanna N, Crouch R and Naher S 2019 Opt. Lasers Eng. 122 151
3 Yan Z, Liu W, Tang Z, Liu X, Zhang N, Li M and Zhang H 2018 Opt. Laser Technol. 106 427
4 Beretta S and Romano S 2017 Int. J. Fatigue 94 178
5 Chew Y and Pang J H L 2016 Int. J. Fatigue 87 235
6 Shao S, Khonsari M M, Guo S, Meng W J and Li N 2019 Addit. Manuf. 29 100779
7 Bailey N S, Katinas C and Shin Y C 2017 J. Mater. Process. Technol. 247 223
8 Wang L, Jiang X, Zhu Y, Zhu X, Sun J and Yan B 2018 Int. J. Adv. Manuf. Technol. 97 3535
9 Alizadeh-Sh M, Marashi S P H, Ranjbarnodeh E, Shoja-Razavi R and Oliveira J P 2020 Opt. Laser Technol. 128 106244
10 Jiang Y, Cheng Y, Zhang X, Yang J, Yang X and Cheng Z 2020 Optik . 203 164044
11 Li C, Yu Z, Gao J, Zhao J and Han X 2019 Surf. Coatings Technol. 357 965
12 Jiang W, Yahiaoui K, Hall F R and Laoui T 2005 J. Strain Anal. Eng. Des. 40 587
13 Li Y and Gu D 2014 Mater. Des. 63 856
14 Gao W, Zhao S, Wang Y, Zhang Z, Liu F and Lin X 2016 Int. J. Heat Mass Transf. 92 83
15 Farahmand P and Kovacevic R 2014 Opt. Laser Technol. 63 154
16 Hao M and Sun Y 2013 Int. J. Heat Mass Transf. 64 352
17 Wirth F and Wegener K 2018 Addit. Manuf. 22 307
18 Gao J, Wu C, Hao Y, Xu X and Guo L 2020 Opt. Laser Technol. 129 106287
19 Mohajernia B, Urbanic R J and Nazemi N 2019 IFAC-PapersOnLine 52 236
20 Khamidullin B A, Tsivilskiy I V, Gorunov A I and Gilmutdinov A K 2019 Surf. Coatings Technol. 364 430
21 Sun S, Fu H, Chen S, Ping X, Wang K, Guo X, Lin J and Lei Y 2019 Opt. Laser Technol. 117 175
22 Chew Y, Pang J H L, Bi G and Song B 2015 J. Mater. Process. Technol. 224 89
23 Ghorashi M S, Farrahi G H and Movahhedy M R 2019 J. Manuf. Process. 42 149
24 Lian G F, Yao M P, Liu Z C, Yang S, Chen CR, Wang H, Xiang Y S and Cong W L 2019 Procedia Manuf. 34 233
25 Prasad R, Waghmare D T, Kumar K and Masanta M 2020 Surf. Coatings Technol. 385 125417
26 Zhao Y, Chen L, Sun J and Yu T 2020 Optik. 212 164714
27 Shen F, Tao W, Li L, Zhou Y, Wang W and Wang S 2020 Appl. Surf. Sci. 517 146085
28 Cui Z, Qin Z, Dong P, Mi Y, Gong D and Li W 2020 Mater. Lett. 259 126769
29 Yan Z, Liu W, Tang Z, Liu X, Zhang N, Wang Z and Zhang H 2019 J. Manuf. Process. 44 309
30 Schopphoven T, Gasser A, Wissenbach K and Poprawe R 2016 J. Laser Appl. 28 022501
31 Liang W, Murakawa H and Deng D 2015 Mater. Des. 67 303
32 Chen Q, Yang J, Liu X, Tang J and Huang B 2019 J. Manuf. Process. 45 290
33 Yevko V, Park C B, Zak G, Coyle T W and Benhabib E B 1998 Rapid Prototyp. J. 4 168
34 Deshpande A A, Tanner D W J, Sun W, Hyde T H and McCartney G 10.1177/14644207JMDA349 2011 Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 225 1
35 Javadi Y, Akhlaghi M and Najafabadi M A 2013 Mater. Des. 45 628
36 Zou S, Xiao H, Ye F, Li Z, Tang W, Zhu F, Chen C and Zhu C 2020 Results Phys. 16 103005
37 Deus A M and Mazumder J2006 ICALEO\circledR 2006: 25th International Congress on Laser Materials Processing and Laser Microfabrication 496
38 Zhang H, Wang Y, Han T, Bao L, Wu Q and Gu S 2020 J. Manuf. Process. 51 95
39 Toyserkani E, Khajepour A and Corbin S 2004 Opt. Lasers Eng. 41 849
40 Zhao H Y, Zhang H T, Xu C H and Yang X Q 2009 Trans. Nonferrous Met. Soc. China 19 s495
41 Tao Y, Li J, Lü Y and Hu L 2017 Trans. Nonferrous Met. Soc. China 27 2043
42 Du L, Gu D, Dai D, Shi Q, Ma C and Xia M 2018 Opt. Laser Technol. 108 207
43 Koruba P, Wall K and Reiner J 2018 Procedia CIRP 74 719
44 Simchi A and Pohl H 2003 Mater. Sci. Eng. A 359 119
[1] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[2] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[3] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[4] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[5] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[6] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[7] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[8] Electron beam irradiation on novel coronavirus (COVID-19): A Monte-Carlo simulation
Guobao Feng(封国宝), Lu Liu(刘璐), Wanzhao Cui(崔万照), Fang Wang(王芳). Chin. Phys. B, 2020, 29(4): 048703.
[9] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[10] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[11] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[12] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[13] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[14] Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device
Liang-Yu Wu(吴梁玉), Ling-Bo Liu(刘凌波), Xiao-Tian Han(韩笑天), Qian-Wen Li(李倩文), Wei-Bo Yang(杨卫波). Chin. Phys. B, 2019, 28(10): 104702.
[15] Phase field simulation of single bubble behavior under an electric field
Chang-Sheng Zhu(朱昶胜), Dan Han(韩丹), Sheng Xu(徐升). Chin. Phys. B, 2018, 27(9): 094704.
No Suggested Reading articles found!