Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027401    DOI: 10.1088/1674-1056/abcf98

Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2

A B Yu(于奥博)1,4,5, Z Huang(黄喆)1,4, C Zhang(张驰)1,4,5, Y F Wu(吴宇峰)2, T Wang(王腾)1,4, T Xie(谢涛)5,6, C Liu(刘畅)5,6, H Li(李浩)1,4,5, W Peng(彭炜)1,4,5, H Q Luo(罗会仟)5,6,7, G Mu(牟刚)1,4,5, H Xiao(肖宏)3, L X You(尤立星)1,4,5, and T Hu(胡涛)2,
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 3 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; 4 CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China; 5 University of Chinese Academy of Sciences, Beijing 100049, China; 6 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 7 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The vortex pinning determining the current carrying capacity of a superconductor is an important property to the applications of superconducting materials. For layered superconductors, the vortex pinning can be enhanced by a strong interlayer interaction in accompany with a suppression of superconducting anisotropy, which remains to be investigated in iron based superconductors (FeSCs) with the layered structure. Here, based on the transport and magnetic torque measurements, we experimentally investigate the vortex pinning in two bilayer FeSCs, CaKFe4As4(Fe1144) and KCa2Fe4As4F2(Fe12442), and compare their superconducting anisotropy γ. While the anisotropy γ ≈ 3 for Fe1144 is much smaller than γ ≈ 15 in Fe12442 around T c, a higher flux pinning energy as evidenced by a higher critical current density is found in Fe1144, as compared with the case of Fe12442. In combination with the literature data of Ba0.72K0.28Fe2As2 and NdFeAsO0.82F0.18, we reveal an anti-correlation between the pinning energy and the superconducting anisotropy in these FeSCs. Our results thus suggest that the interlayer interaction can not be neglected when considering the vortex pinning in FeSCs.
Keywords:  iron based superconductors      vortex pinning      anisotropy  
Published:  18 January 2021
PACS:  74.25.Qt  
  75.30.Gw (Magnetic anisotropy)  
  74.25.Sv (Critical currents)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574338) and the National Natural Science Foundation of China-China Academy of Engineering Physics NSAF Joint Fund (Grant No. U1530402). The experimental measurements were supported by the Superconducting Electronics Facility (SELF) of Shanghai Institute of Microsystem and Information Technology. The work at IOP, CAS was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704200), the National Natural Science Foundation of China (Grant Nos. 11822411 and 11961160699), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant No. XDB25000000), and the Youth Innovation Promotion Association of CAS (Grant No. 2016004).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

A B Yu(于奥博), Z Huang(黄喆), C Zhang(张驰), Y F Wu(吴宇峰), T Wang(王腾), T Xie(谢涛), C Liu(刘畅), H Li(李浩), W Peng(彭炜), H Q Luo(罗会仟), G Mu(牟刚), H Xiao(肖宏), L X You(尤立星), and T Hu(胡涛) Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2 2021 Chin. Phys. B 30 027401

1 Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
2 Bugoslavsky Y, Cohen L, Perkins G, Polichetti M, Tate T, Gwilliam R and Caplin A 2001 Nature 411 561
3 MacManus-Driscoll J, Foltyn S, Jia Q, Wang H, Serquis A, Civale L, Maiorov B, Hawley M, Maley M and Peterson D 2004 Nat. Mater. 3 439
4 Matsumoto K and Mele P 2009 Superconductor Science and Technology 23 014001
5 Lee S, Tarantini C, Gao P, et al. 2013 Nat. Mater. 12 392
6 Eisterer M 2017 Superconductor Science and Technology 31 013001
7 Leroux M, Kihlstrom K J, Holleis S, et al. 2015 Appl. Phys. Lett. 107 192601
8 Yuan P, Xu Z, Wang D, Zhang M, Li J and Ma Y 2016 Superconductor Science and Technology 30 025001
9 Blatter G, Geshkenbein V, Larkin A and Nordborg H 1996 Phys. Rev. B 54 72
10 Choi J H, Kim M S, Lee S I, Lee S Y, Yang I S, Yakhmi J, Mandal J, Bandyopadhyay B and Ghosh B 1998 Phys. Rev. B 58 538
11 Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012
12 Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
13 Ma Y 2012 Superconductor Science and Technology 25 113001
14 Shimoyama J 2014 Superconductor Science and Technology 27 044002
15 Wang X L, Ghorbani S R, Lee S I, et al. 2010 Phys. Rev. B 82 024525
16 Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 3410
17 Meier W R, Kong T, Kaluarachchi U S, et al. 2016 Phys. Rev. B 94 064501
18 Khasanov R, Meier W R, Bud'ko S L, Luetkens H, Canfield P C and Amato A 2019 Phys. Rev. B 99 140507
19 Singh S J, Bristow M, Meier W R, Taylor P, Blundell S J, Canfield P C and Coldea A I 2018 Phys. Rev. Materials 2 074802
20 Ishida S, Iyo A, Ogino H, et al. 2019 npj Quantum Mater. 4 27
21 Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856
22 Wang T, Chu J, Feng J, et al. 2020 Sci. China Phys. Mech. Astron. 63 297412
23 Wu D, Hong W, Dong C, et al. 2020 Phys. Rev. B 101 224508
24 Xu B, Munzar D, Dubroka A, Sheveleva E, Lyzwa F, Marsik P, Wang C, Wang Z, Cao G and Bernhard C 2020 Phys. Rev. B 101 214512
25 Hong W, Song L, Liu B, et al. 2020 Phys. Rev. Lett. 125 117002
26 Wang T, Zhang C, Xu L, et al. 2020 Sci. Chin. Phys. Mech. Astron. 63 227412
27 Yu A, Wang T, Wu Y, Huang Z, Xiao H, Mu G and Hu T 2019 Phys. Rev. B 100 144505
28 Meier W R, Kong T, Bud'ko S L and Canfield P C 2017 Phys. Rev. Materials 1 013401
29 Wang T, Chu J, Jin H, et al. 2019 J. Phys. Chem. C 123 13925
30 Jia Y, Cheng P, Fang L, Luo H, Yang H, Ren C, Shan L, Gu C and Wen H H 2008 Appl. Phys. Lett. 93 032503
31 Tinkham M2004 Introduction to Superconductivity, 2nd edn. (New York: Courier Corporation)
32 Zhou W, Zhuang J, Yuan F, Li X, Xing X, Sun Y and Shi Z 2014 Appl. Phys. Express 7 063102
33 Fang M, Yang J, Balakirev F, Kohama Y, Singleton J, Qian B, Mao Z, Wang H and Yuan H 2010 Phys. Rev. B 81 020509
34 Yuan H, Singleton J, Balakirev F, Baily S, Chen G, Luo J and Wang N 2009 Nature 457 565
35 Wang X, Ghorbani S, Dou S, Shen X L, Yi W, Li Z C and Ren Z A2008 arXiv preprint arXiv:0806.1318
36 Van Gennep D, Hassan A, Luo H and Abdel-Hafiez M 2020 Phys. Rev. B 101 235163
37 Wang Z, Xie T, Kampert E, Förster T, Lu X, Zhang R, Gong D, Li S, Herrmannsdörfer T, Wosnitza J and Luo H 2015 Phys. Rev. B 92 174509
38 Kogan V 1988 Phys. Rev. B 38 7049
39 Drzazga Z, Szymczak H and Szymczak R 1992 Physica C 203 335
40 Hagen C, Bom M, Griessen R, Dam B and Veringa H 1988 Physica C 153 322
41 Campbell L, Doria M and Kogan V 1988 Phys. Rev. B 38 2439
42 Kasahara S, Shi H, Hashimoto K, et al. 2012 Nature 486 382
43 Okazaki R, Shibauchi T, Shi H, Haga Y, Matsuda T, Yamamoto E, Onuki Y, Ikeda H and Matsuda Y 2011 Science 331 439
44 Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
45 Xiao H, Gao B, Ma Y, Li X, Mu G and Hu T 2016 J. Phys.: Condens. Matter 28 325701
46 Xiao H, Hu T, Zhang W, Dai Y, Luo H, Wen H, Almasan C and Qiu X 2014 Phys. Rev. B 90 214511
47 Xiao H, Hu T, Almasan C, Sayles T and Maple M 2006 Phys. Rev. B 73 184511
48 Ishida T, Okuda K, Asaoka H, Kazumata Y, Noda K and Takei H 1997 Phys. Rev. B 56 11897
49 Tachiki M and Takahashi S 1989 Solid State commun. 72 1083
50 Tachiki M and Takahashi S 1989 Solid State commun. 70 291
51 Kes P, Aarts J, Vinokur V and Van der Beek C 1990 Phys. Rev. Lett. 64 1063
52 Wang C, He T, Han Q, Wang B, Xie R, Li Y, Tang Q, Li Y and Yu B 2020 Superconductor Science and Technology 33 045011
[1] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[2] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[3] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[4] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[5] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[6] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[7] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[8] Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy
J Lim(林镇杰), K J A Ooi(黄健安), C Zhang(涨潮), L K Ang(洪礼祺), Yee Sin Ang(洪逸欣). Chin. Phys. B, 2020, 29(7): 077802.
[9] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[10] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[11] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[12] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[13] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[14] Phase-field simulation of superconductor vortex clustering in the vicinity of ferromagnetic domain bifurcations
Hasnain Mehdi Jafri, Jing Wang(王静), Chao Yang(杨超), Jun-Sheng Wang(王俊升), and Hou-Bing Huang(黄厚兵). Chin. Phys. B, 2020, 29(12): 127402.
[15] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
No Suggested Reading articles found!