Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 058201    DOI: 10.1088/1674-1056/abcf49
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dynamics analysis in a tumor-immune system with chemotherapy

Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵)
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract  An ordinary differential equation (ODE) model of tumor growth with the effect of tumor-immune interaction and chemotherapeutic drug is presented and studied. By analyzing the existence and stability of equilibrium points, the dynamic behavior of the system is discussed elaborately. The chaotic dynamics can be obtained in our model by equilibria analysis, which show the existence of chaos by calculating the Lyapunov exponents and the Lyapunov dimension of the system. Moreover, the action of the infusion rate of the chemotherapeutic drug on the resulting dynamics is investigated, which suggests that the application of chemotherapeutic drug can effectively control tumor growth. However, in the case of high-dose chemotherapeutic drug, chemotherapy-induced effector immune cells damage seriously, which may cause treatment failure.
Keywords:  dynamical model      tumor-immune system      chemotherapy      chaos  
Received:  08 September 2020      Revised:  02 November 2020      Accepted manuscript online:  01 December 2020
PACS:  82.40.Bj (Oscillations, chaos, and bifurcations)  
  87.10.Ed (Ordinary differential equations (ODE), partial differential equations (PDE), integrodifferential models)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.19.xj (Cancer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11762011).
Corresponding Authors:  Hong-Li Yang     E-mail:  imuyhl@imu.edu.cn

Cite this article: 

Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵) Dynamics analysis in a tumor-immune system with chemotherapy 2021 Chin. Phys. B 30 058201

[1] Gatenby R A and Maini P K 2003 Nature 421 321
[2] Liu N, Wang D N, Liu H Y, Yang H L and Yang L G 2020 Chin. Phys. B 29 068704
[3] Hellström K E and Hellström I 1974 Advances in Immunology 18 209
[4] Boon T, Cerottini J, Den Eynde B V, Der Bruggen P V and Van Pel A 1994 Annual Review of Immunology 12 337
[5] Kuznetsov V A, Makalkin I A, Taylor M A and Perelson A S 1994 Bulletin of Mathematical Biology 56 295
[6] Kirschner D E and Panetta J C 1998 J. Math. Biol. 37 235
[7] Letellier C, Denis F and Aguirre L A 2013 J. Theor. Biol. 322 7
[8] Neoptolemos J P, Stocken D D, Friess H, Bassi C, Dunn J A, Hickey H, Beger H G, Fernandezcruz L, Dervenis C, Lacaine F, Falconi M, Pederzoli P, Pap A F, Spooner D, Kerr D J and Buchler M W 2004 The New England Journal of Medicine 350 1200
[9] Sanga S, Sinek J P, Frieboes H B, Ferrari M and Cristini V 2006 Expert Review of Anticancer Therapy 6 1361
[10] Li H, Wang C, Yu J, Cao S, Wei F, Zhang W, Han Y and Ren X 2009 Cytotherapy 11 1076
[11] Machiels J H, Reilly R T, Emens L A, Ercolini A M, Lei R Y, Weintraub D, Okoye F I and Jaffee E M 2001 Cancer Research 61 3689
[12] Nowak A K, Robinson B and Lake R A 2003 Cancer Research 63 4490
[13] Li D X and Ying L 2017 Chin. Phys. B 26 090203
[14] Dudley M E, Wunderlich J R, Robbins P F, Yang J C, Hwu P, Schwartzentruber D J, Topalian S L, Sherry R, Restifo N P, Hubicki A M, Robinson M R, Raffeld M, Duray P, Seipp C A, Rogers-Freezer L, Morton K E, Mavroukakis S A, White D E and Rosenberg S A 2002 Science 298 850
[15] Ramakrishnan R, Assudani D, Nagaraj S, Hunter T B, Cho H I, Antonia S, Celis E and Gabrilovich D I 2010 Journal of Clinical Investigation 120 1111
[16] Ahn I and Park J 2011 Biosystems 106 121
[17] Gillio A P, Gasparetto C, Laver J, Abboud M, Bonilla M A 1990 Journal of Clinical Investigation 85 1560
[18] Bunimovichmendrazitsky S, Byrne H M and Stone L 2008 Bulletin of Mathematical Biology 70 2055
[19] Bunimovichmendrazitsky S, Shochat E and Stone L 2007 Bulletin of Mathematical Biology 69 1847
[20] Castiglione F and Piccoli B 2007 J. Theor. Biol. 247 723
[21] De Pillis L G, Gu W and Radunskaya A E 2006 J. Theor. Biol. 238 841
[22] Itik M and Banks S P 2010 Int. J. Bifurc. Chaos 20 71
[23] Hao M L, Xu W, Gu X D and Qi L Y 2014 Chin. Phys. B 23 090501
[24] De Pillis L G and Radunskaya A E 2007 J. Theor. Med. 3 79
[25] De Pillis L G and Radunskaya A E 2003 Mathematical and Computer Modelling: An International Journal 37 1221
[26] De Pillis L G, Radunskaya A E and Wiseman C L 2005 Cancer Research 65 7950
[27] Usher J R 1994 Comput. Math. Appl. 28 73
[28] Pinho S T R, Freedman H I and Nani F 2002 Math. Comput. Model. 36 773
[29] Letellier C, Sasmal S K, Draghi C, Denis F, Ghosh D 2017 Chaos, Solitons and Fractals 99 297
[30] Pinho S T, Bacelar F S, Andrade R F and Freedman H I 2013 Nonlinear Analysis-Real World Applications 14 815
[31] Kamke E 1932 Acta Mathematica 58 57
[32] Kot M 2001 Elements of Mathematical Ecology (Cambridge: Cambridge University Press) pp. 365-376
[33] Viger L, Denis F, Rosalie M and Letellier C 2014 J. Theor. Biol. 360 21
[34] Borges F S, Iarosz K C, Ren H P, Batista A M, Baptista M S, Viana R L, Lopes S R and Grebogi C 2014 Biosystems 116 43
[35] Li X M and Liao S J 2018 Applied Mathematics and Mechanics (English Edition) 39 1529
[36] Cai M, Liu W F and Liu J 2013 Applied Mathematics and Mechanics (English Edition) 34 627
[37] Alvarez R F, Barbuto J A and Venegeroles R 2019 J. Theor. Biol. 471 42
[38] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D: Nonlinear Phenomena 16 285
[39] De Pillis L G and Radunskaya A E 2001 J. Theor. Med. 3 79
[40] Denis F and Letellier C 2012 Cancer Radiother 16 404
[41] Denis F and Letellier C 2012 Cancer Radiother 16 230
[42] Davoli T, Xu A W, Mengwasser K E, Sack L M, Yoon J C, Park P J and Elledge S J 2013 Cell 155 948
[43] Klein K, Maier T, Hirschfeld-Warneken V C and Spatz J P 2013 Nano Lett. 13 5474
[44] Crawford S A 2017 Journal of Traditional Medicine and Clinical Naturopathy 6 1000232
[1] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[2] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[3] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[4] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[5] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[6] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[7] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[8] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[9] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[10] A secure image protection algorithm by steganography and encryption using the 2D-TSCC
Qi Li(李琦), Xingyuan Wang(王兴元), He Wang(王赫), Xiaolin Ye(叶晓林), Shuang Zhou(周双), Suo Gao(高锁), and Yunqing Shi(施云庆). Chin. Phys. B, 2021, 30(11): 110501.
[11] Physical generation of random numbers using an asymmetrical Boolean network
Hai-Fang Liu(刘海芳), Yun-Cai Wang(王云才), Lu-Xiao Sang(桑鲁骁), and Jian-Guo Zhang(张建国). Chin. Phys. B, 2021, 30(11): 110503.
[12] A memristive map with coexisting chaos and hyperchaos
Sixiao Kong(孔思晓), Chunbiao Li(李春彪), Shaobo He(贺少波), Serdar Çiçek, and Qiang Lai(赖强). Chin. Phys. B, 2021, 30(11): 110502.
[13] Application of the edge of chaos in combinatorial optimization
Yanqing Tang(唐彦卿), Nayue Zhang(张娜月), Ping Zhu(朱萍), Minghu Fang(方明虎), and Guoguang He(何国光). Chin. Phys. B, 2021, 30(10): 100505.
[14] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[15] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
No Suggested Reading articles found!