Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044702    DOI: 10.1088/1674-1056/abcf44
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses

Xi Wang(王曦)1, Xiao-Mian Hu(胡晓棉)1, Sheng-Tao Wang(王升涛)1, and Hao Pan(潘昊)1,2,†
1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China; 2 Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract  A simplified theoretical model for the linear Rayleigh-Taylor instability of finite thickness elastic-plastic solid constantly accelerated by finite thickness viscous fluid is performed. With the irrotational assumption, it is possible to consider viscosity, surface tension, elasticity or plasticity effects simultaneously. The model considers thicknesses at rigid wall boundary conditions with the velocity potentials, and deals with solid elastic-plastic transition and fluid viscosity based on the velocity continuity and force equilibrium at contact interface. The complete analytical expressions of the amplitude motion equation, the growth rate, and the instability boundary are obtained for arbitrary Atwood number, viscosity, thicknesses of solid and fluid. The thicknesses effects of two materials on the growth rate and the instability boundary are discussed.
Keywords:  Rayleigh-Taylor instability      viscosity      plasticity      thicknesses effects  
Received:  31 August 2020      Revised:  29 October 2020      Accepted manuscript online:  01 December 2020
PACS:  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  66.20.-d (Viscosity of liquids; diffusive momentum transport)  
  46.35.+z (Viscoelasticity, plasticity, viscoplasticity)  
  68.55.jd (Thickness)  
Fund: Project supported by of the Science Challenge Project of China (Grant No. TZ2018001).
Corresponding Authors:  Corresponding author. E-mail: pan_hao@iapcm.ac.cn   

Cite this article: 

Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊) A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses 2021 Chin. Phys. B 30 044702

1 Bakhrakh S M, Drennov O B, Kovalev N P, Lebedev A I, Meshkov E E, Mikhailov A L, Nevmerzhitsky N V, Nizovtsev P N, Rayevsky V A, Simonov G P, Solovyev V P and Zhidov I G 1997 Lawrence Livermore National Laboratory Report No. UCRL-CR-126710 (unpublished)
2 Dimonte G, Gore R and Schneider M 1998 Phys. Rev. Lett. 80 1212
3 Plohr B J and Sharp D H 1998 Z. Angew. Math. Phys. 49 786
4 Lòpez Cela J J, Piriz A R, Serna Moreno M C, Tahir N A and Hoffmann D H H 2006 Laser Part. Beams 24 275
5 Zhou Y 2017 Phys. Rep. 720-722 1
6 Zhou Y 2017 Phys. Rep. 723-725 1
7 Barnes J F, Blewett P J, McQueen R G, Meyer K A,Venable D 1974 J. Appl. Phys. 45 727
8 Drucker D C 1980 Mecha. Today 5 37
9 Barnes J F, Janney D H, London R K, Meyer K A and Sharp D H 1980 J. Appl. Phys. 51 4678
10 Kalantar D H, Remington B A, Colvin J D, Mikaelian K O, Weber S V, Wiley L G, Wark J S, Loveridge A, Allen A M, Hauer A A and Meyers M A 2000 Phys. Plasmas 7 1999
11 Tahir N A, Deutsch C, Fortov V E, Gryaznov V, Hoffmann D H H, Kulish M, Lomonosov I V, Mintsev V, Ni P, Nikolaev D, Piriz A R, Shilkin N, Spiller P, Shutov A, Temporal M, Ternovoi V, Udrea S and Varentsov D 2005 Phys. Rev. Lett. 95 035001
12 McBride R D, Martin M R, Lemke R W, et al.2013 Phys. Plasmas 20 056309
13 Kobyakov D and Pethick C J 2014 Phys. Rev. Lett. 112 112504
14 Gorczyk W and Vogt K 2015 Gondwana Res. 27 196
15 Opie S, Loomis E, Peralta P, Shimada T and Johnson R P 2017 Phys. Rev. Lett. 118 195501
16 Knapp P F, Martin M R, Dolan D H, Cochrane K, Dalton D, Davis J, Jennings C A, Loisel G P, Romero D H, Smith I C, Yu E P, Weis M R, Mattsson T R, McBride R D, Peterson K, Schwarz J and Sinars D B 2017 Phys. Plasmas 24 042708
17 Colvin J D, Legrand M, Remington B A, Shurtz G and Weber SV 2003 J. Appl. Phys. 93 5287
18 Remington B A, Allen P, Bringa E M, Hawreliak J, Ho D, Lorenz K T, Lorenzana H, McNaney J M, Meyers M A, Pollaine S W, Rosolankova K, Sadik B, Schneider M S, Swift D, Wark J and Yaakobi B 2006 Mater. Sci. Technol. 22 474
19 Park H S, Lorenz K T, Cavallo R M, Pollaine S M, Prisbrey S T, Rudd R E, Becker R, Bernier J V and Remington B A 2010 Phys. Rev. Lett. 104 135504
20 Sinars D B, Slutz S A, Herrmann M, et al. 2010 Phys. Rev. Lett. 105 185001
21 Sinars D B, Slutz S A, Herrmann M, et al. 2010 Phys. Plasmas 18 056301
22 Tahir N A, Hoffmann D H H, Kozyreva A, Tauschwitz A, Shutov A, Maruhn J A, Spiller P, Neuner U, Jacoby J, Roth M, Bock R, Juranek H and Redmer R 2000 Phys. Rev. E 61 1975
23 Hall C A, Asay J R, Knudsen M D, Stygan W A, Spielman R B, Pointon T D, Reisman D B, Toor A and Cauble R C 2001 Rev. Sci. Instrum. 72 3587
24 Tahir N A, Juranek H, Shutov A, Redmer R, Piriz A R, Temporal M, Varentsov D, Udrea S, Hoffmann D H H, Deutsch C, Lomonosov I and Fortov V E 2003 Phys. Rev. B 67 184101
25 Temporal M, Piriz A R, Grandjouan N, Tahir N A and Hoffmann D H H 2003 Laser Part. Beams 21 609
26 Miles J W1966 General Dynamics Report No. GAMD-7335, AD 643161 (unpublished).
27 Robinson A C and Swegle J W 1989 J. Appl. Phys. 66 2859
28 Swegle J W and Robinson A C 1989 J. Appl. Phys. 66 2838
29 Terrones G 2005 Phys. Rev. E 71 036306
30 Piriz S A, Piriz A R and Tahir N A 2017 Phys. Rev. E 96 063115
31 Mikaelian K O 1996 Phys. Rev. E 54 3676
32 Park H S, Lorenz K T, Cavallo R M, Pollaine S M, Prisbrey S T, Rudd R E, Becker R C, Bernier J V and Remington B A 2010 Phys. Rev. Lett. 105 179602
33 Piriz A R, Lòpez Cela J J and Tahir N A 2010 Phys. Rev. Lett. 105 179601
34 Piriz A R, Lòpez Cela J J, Cortàzar O D, Tahir N A and Hoffmann D H H 2005 Phys. Rev. E 72 056313
35 Piriz A R, Lòpez Cela J J, Moreno M C S, Tahir N A and Hoffmann D H H 2006 Laser Part. Beams 24 275
36 Piriz A R, Lòpez Cela J J and Tahir N A 2009 Phys. Rev. E 80 046305
37 Piriz A R, Sun Y B and Tahir N A 2013 Phys. Rev. E 88 023026
38 Piriz A R, Sun Y B and Tahir N A 2014 Phys. Rev. E 89 063022
39 Sun Y B, Tao J J and He X T 2018 Phys. Rev. E 97 063109
40 Piriz A R, Piriz S A and Tahir N A 2019 Phys. Rev. E 100 063104
41 Bellman R and Pennington R H 1954 Quart. J. Mech. Appl. Math. 12 151
42 Piriz A R, Sun Y B and Tahir N A 2017 Eur. J. Phys. 38 015003
43 Gurtin M E and Anand L 2005 J. Mech. Phys. Solids 53 1624
44 Taylor G I 1950 Proc. R. Soc. London Ser. A 201 192
45 Landau L D and Lifshits E M 1987 Fluid Mechanics, 2nd edn. (Oxford: Pergamon)
46 Chandrasekhar S1961 Hydrodynamics and Hydromagnetic Stability (London: Oxford University Press)
47 Landau L D and Lifshits E M 1986 Theory of Elasticity, 3rd edn. (Oxford: Pergamon)
48 Piriz A R, Lòpez Cela J J and Tahir N A 2009 J. Appl. Phys. 105 116101
[1] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
[2] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[3] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[4] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[5] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[6] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[7] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[8] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[9] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[10] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[11] Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017304.
[12] Coupling between velocity and interface perturbations in cylindrical Rayleigh-Taylor instability
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(5): 055205.
[13] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[14] Influence of high pulsed magnetic field on tensile properties of TC4 alloy
Gui-Rong Li(李桂荣), Fang-Fang Wang(王芳芳), Hong-Ming Wang(王宏明), Rui Zheng(郑瑞), Fei Xue(薛飞), Jiang-Feng Cheng(程江峰). Chin. Phys. B, 2017, 26(4): 046201.
[15] General equation describing viscosity of metallic melts under horizontal magnetic field
Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮). Chin. Phys. B, 2017, 26(3): 036601.
[1] CHENG HUAN-SHENG, SHEN HAO, TANG JIA-YONG, YANG FU-JIA. THE STUDIES OF NON-RUTHERFORD BACKSCATTERING CROSS SECTIONS OF 4He FROM 16O[J]. Acta Phys. Sin. (Overseas Edition), 1993, 2(9): 641 -647 .
[2] D.B. GRAVES, WU HAN-MING, LI MING, R.K PORTEOUS. BEHAVIOR OF Ar PLASMA FORMED IN A HIGH DENSITY PLASMA SOURCE-AN ECR REACTOR[J]. Acta Phys. Sin. (Overseas Edition), 1994, 3(10): 746 -757 .
[3] WANG HAI-LONG, YANG XI-ZHEN, FENG SONG-LIN, ZHOU JIE. DETERMINATION OF CAPTURE BARRIERS OF DEFECTS FOR GaAs ALLOYS AND TRANSIENT PHOTO-RESISTIVITY SPECTROSCOPY[J]. Acta Phys. Sin. (Overseas Edition), 1996, 5(1): 1 -9 .
[4] WANG YONG-CHENG. SCHWARZSCHILD BLACK HOLE,VACUUM C METRIC WHEN m=0 AND RINDLER METRIC[J]. Acta Phys. Sin. (Overseas Edition), 1997, 6(9): 666 -670 .
[5] Fang Jin-qing, Chen Guan-rong, Hong Yi-guang, Qin Hua-shu. CONTROLLING HOPF BIFURCATIONS: CONTINUOUS-TIME SYSTEMS[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(6): 416 -422 .
[6] Lü Lan-bin, Chen Hong-zhi, Qu Chang-zhi, Tang Jun-xiong, Lu Yuan, Li Chun-yong, Zhang Yan-feng, Huang Qi, Fu Pan-ming, Zhang Zhi-guo. STUDY OF THE FOUR-WAVE MIXING DIFFRACTION EFFICIENCY OF LONGITUDINAL-FIELD MULTIPLE-QUANTUM-WELL PHOTOREFRACTIVE DEVICE GROWN AT LOW TEMPERATURE[J]. Chin. Phys., 2001, 10(2): 121 -123 .
[7] Wang Shu-Xia, Zhang Han, Liu Wen-Li, Han Sheng-Hao. Combinative energy, oxygen deficiency and superconductivity in LnBa2Cu3O7-x(Ln=Nd, Er, Sm)[J]. Chin. Phys., 2003, 12(11): 1291 -1295 .
[8] Xie Xin-Hua, Liu Ya-Qing, Fan Pin-Zhong, Li Ru-Xin. Spectral focusing characteristics of a grazing-incidence flat-field grating spectrometer[J]. Chin. Phys., 2004, 13(11): 1826 -1829 .
[9] Jiang Li-Xia, Xia Zhao-Yang, Meng Ji-Bao, Chen Zhao-Jia, Luo Jian-Lin, Wang Nan-Lin. Low-temperature specific heat and resistance for the heavy-electron metals CeCu6-xMx (M=Ni,Zn)[J]. Chin. Phys., 2004, 13(12): 2130 -2135 .
[10] Bi Yong, Bo Yong, Li Rui-Ning, Cui Da-Fu, Xu Zu-Yan, Geng Ai-Cong, Sun Zhi-Pei, Yang Xiao-Dong, Peng Qin-Jun, Li Hui-Qing. 1.15kW continuous-wave generation by diode-side-pumped two-rod Nd:YAG laser[J]. Chin. Phys., 2005, 14(4): 771 -773 .