Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036501    DOI: 10.1088/1674-1056/abcf39
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12

Jun-Ping Wang(王俊平) 1,2,†, Qing-Dong Chen(陈庆东)1, Li-Gang Chen(陈立刚)1, Yan-Jun Ji(纪延俊)1, You-Wen Liu(刘友文)2, and Er-Jun Liang(梁二军)3
1 Shandong Engineering Research Center of Aeronautical Materials and Devices; Key Laboratory of Aeronautical Optoelectronic Materials and Devices, College of Aeronautical Engineering, Binzhou University, Binzhou 256603, China; 2 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 3 School of Physical Science & Engineering and Key Laboratory of Materials Physics of Ministry of Education, Zhengzhou University, Zhengzhou 450052, China
Abstract  A new material of Zr0.1Al1.9Mo2.9V0.1O12 is synthesized by the traditional solid state synthesis method. The phase transition, coefficient of thermal expansion, and luminescence properties of Zr0.1Al1.9Mo2.9V0.1O12 are explored with Raman spectrometer, dilatometer, and x-ray diffraction (XRD) diffractometer. The results show that the Zr0.1Al1.9Mo2.9V0.1O12 possesses the strong broad-band luminescence characteristics almost in the whole visible region. The sample is crystallized in a monoclinic structure group of P21/a (No. 14) crystallized at room temperature (RT). The crystal is changed from monoclinic to orthorhombic structure when the temperature increases to 463 K. The material has very low thermal expansion performance in a wide temperature range. Its excellent low thermal expansion and strong pale green light properties in a wide temperature range suggest its potential applications in light-emitting diode (LED) and other optoelectronic devices.
Keywords:  low thermal expansion      phase transition      x-ray diffraction (XRD)      Raman spectrum      luminescence  
Received:  31 July 2020      Revised:  23 November 2020      Accepted manuscript online:  01 December 2020
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  61.50.-f (Structure of bulk crystals)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874328, U1731121, and 41401384) and the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J17KB127).
Corresponding Authors:  Corresponding author. E-mail: Wangjunping-99@163.com   

Cite this article: 

Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军) Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12 2021 Chin. Phys. B 30 036501

1 Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
2 Wang J P, Chen Q D, Li S L, Ji Y J, Mu W Y, Feng W W, Zeng G J, Liu Y W and Liang E J 2018 Chin. Phys. B 27 066501
3 Sun Y, Wang C, Wen Y C and Chu L H 2010 J. Am. Ceram. Soc. 93 650
4 Ding P, Liang E J, Jia Y and Du Z Y 2008 J. Phys.: Condens. Matter 20 275224
5 Suleimanov R A and Abdullaev 1993 Carbon 31 1011
6 Deng Z, Smolyanitsky A, Li Q, Feng X Q and Cannara R J 2012 Nat. Mater. 11 1032
7 Liu H, Sun W, Zhang Z, Zhou M, Meng X and Zeng X 2018 J. Alloys Compd. 751 49
8 Prisco L P, Marzano M, Ponton P I and Costa A M L M 2019 Int. J. Appl. Cera. 16 13054
9 Mary T A and Sleight A W J 1999 Mater. Res. 14 912
10 Evans J S O, Mary T A and Sleight A W 1997 J. Solid State Chem. 133 580
11 Gao S, Zhao N, Liu Q and Li Y 2019 J. Alloys Compd. 779 108
12 Varga T, Moats J L, Ushakov S V and Navrotsky A 2007 J. Mater. Res. 22 2512
13 Prisco L P, Romao C P, Rizzo F, White M A and Marinkovic B A 2013 J. Mater. Sci. 48 2986
14 Cheng Y G, Liu X S, Chen H J, Chao M J and Liang E J 2015 Phys. Chem. Chem. Phys. 17 10363
15 Ari M, Miller K J, Marinkovic B A, Jardim P M, Avillez R, Rizzo F and White M A 2011 J. Sol-Gel Sci. Techn. 58 121
16 Yuan H, Wang C, Gao Q L, Ge X, Sun H, Lapidus S H, Guo J, Chao M, Jia Y and Liang E J 2020 Inorg. Chem. 59 4090
17 He X H, Qi H, Xu Q, Liu X S, Xu L and Yuan B H 2019 Chin. Phy. B 28 056501
18 Li Z Y, Song W B and Liang E J 2011 J. Phys. Chem. C 115 17806
19 Liu Y, Yuan B, Cheng Y, Liang E J, Ge X, Yuan H, Zhang Y, Guo J and Chao M J 2018 Mater. Res. Bull. 99 255
20 Xiao X, Zhou W, Liu X, Chao M J, Li Y, Zhang N, Liu Y, Li Y, Feng D and Liang E J 2015 Ceram. Int. 41 2361
21 Liu X S, ChengY G, Yuan B H, Liang E J and Zhang W F 10.1088/1674-1056/ab3435 2019 Chin. Phy. B 28 096501
22 Miller K J, Romao C P, Bieringer M, Marinkovic B A, Prisco A and White M 2012 J. Am. Chem. Soc. 96 561
23 Cheng Y, Xiao X, Liu X, Wu M M, Peng J and Hu Z B 2013 Physica B 411 173
24 Truitt R, Hermes I M, Main A, Sendecki A and Lind C 2015 Materials 8 700
25 Cheng Y, Liang Y, Mao Y, Ge Xi, Yuan B, Guo Juan, Chao M J and Liang E J 2017 Mater. Res. Bull. 85 176
26 Liu X S, Ge X H, Liang E J and Zhang W F 2017 Chin. Phys. B 26 118101
27 Liu H, Wang X, Zhang Z, Zhang Z ang Chen X 2012 Ceram. Int. 38 6349
28 Li Q, Yuan B, Liang E J, Song W, Liang E J and Yuan B 2012 Chin. Phys. B 21 046501
29 Ge X H, Mao Y C, Liu X S, Chen Y G, Yuan B H, Chao M J and Liang E J 2016 Sci. Rep. 6 24832
30 Chen D, Yuan B and Cheng Y 2016 Phys. Lett. A 380 4070
31 ChengY G, Liang Y, Ge X H, Liu X S, Yuan B H, Guo J, Chao M J and Liang E J 2016 RSC Adv. 6 53657
32 ChengY G, Liang Y, Mao Y C, Ge X H, Yuan B H, Guo J, Chao M J and Liang E J 2017 Mater. Res. Bull. 85 176
33 Schulz B, Andersen H, Al Bahri O O K and Johannessen B 2018 CrystEngComm 20 1352
34 Surjith A, James N K and Ratheesh R 2011 J. Alloys Compd. 509 9992
35 Yanase I, Ootomo R and Kobayashi H 2018 J. Therm. Anal. Calorim. 132 1
36 Husain S, Alkhtaby L A, Giorgetti E, Zoppi A and Miranda M M 2016 J. Lumin. 172 258
[1] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[2] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[3] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[6] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[7] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[10] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[11] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[12] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[13] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[14] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[15] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
No Suggested Reading articles found!