Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036501    DOI: 10.1088/1674-1056/abcf39
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12

Jun-Ping Wang(王俊平) 1,2,†, Qing-Dong Chen(陈庆东)1, Li-Gang Chen(陈立刚)1, Yan-Jun Ji(纪延俊)1, You-Wen Liu(刘友文)2, and Er-Jun Liang(梁二军)3
1 Shandong Engineering Research Center of Aeronautical Materials and Devices; Key Laboratory of Aeronautical Optoelectronic Materials and Devices, College of Aeronautical Engineering, Binzhou University, Binzhou 256603, China; 2 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 3 School of Physical Science & Engineering and Key Laboratory of Materials Physics of Ministry of Education, Zhengzhou University, Zhengzhou 450052, China
Abstract  A new material of Zr0.1Al1.9Mo2.9V0.1O12 is synthesized by the traditional solid state synthesis method. The phase transition, coefficient of thermal expansion, and luminescence properties of Zr0.1Al1.9Mo2.9V0.1O12 are explored with Raman spectrometer, dilatometer, and x-ray diffraction (XRD) diffractometer. The results show that the Zr0.1Al1.9Mo2.9V0.1O12 possesses the strong broad-band luminescence characteristics almost in the whole visible region. The sample is crystallized in a monoclinic structure group of P21/a (No. 14) crystallized at room temperature (RT). The crystal is changed from monoclinic to orthorhombic structure when the temperature increases to 463 K. The material has very low thermal expansion performance in a wide temperature range. Its excellent low thermal expansion and strong pale green light properties in a wide temperature range suggest its potential applications in light-emitting diode (LED) and other optoelectronic devices.
Keywords:  low thermal expansion      phase transition      x-ray diffraction (XRD)      Raman spectrum      luminescence  
Received:  31 July 2020      Revised:  23 November 2020      Accepted manuscript online:  01 December 2020
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  61.50.-f (Structure of bulk crystals)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874328, U1731121, and 41401384) and the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J17KB127).
Corresponding Authors:  Corresponding author. E-mail: Wangjunping-99@163.com   

Cite this article: 

Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军) Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12 2021 Chin. Phys. B 30 036501

1 Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
2 Wang J P, Chen Q D, Li S L, Ji Y J, Mu W Y, Feng W W, Zeng G J, Liu Y W and Liang E J 2018 Chin. Phys. B 27 066501
3 Sun Y, Wang C, Wen Y C and Chu L H 2010 J. Am. Ceram. Soc. 93 650
4 Ding P, Liang E J, Jia Y and Du Z Y 2008 J. Phys.: Condens. Matter 20 275224
5 Suleimanov R A and Abdullaev 1993 Carbon 31 1011
6 Deng Z, Smolyanitsky A, Li Q, Feng X Q and Cannara R J 2012 Nat. Mater. 11 1032
7 Liu H, Sun W, Zhang Z, Zhou M, Meng X and Zeng X 2018 J. Alloys Compd. 751 49
8 Prisco L P, Marzano M, Ponton P I and Costa A M L M 2019 Int. J. Appl. Cera. 16 13054
9 Mary T A and Sleight A W J 1999 Mater. Res. 14 912
10 Evans J S O, Mary T A and Sleight A W 1997 J. Solid State Chem. 133 580
11 Gao S, Zhao N, Liu Q and Li Y 2019 J. Alloys Compd. 779 108
12 Varga T, Moats J L, Ushakov S V and Navrotsky A 2007 J. Mater. Res. 22 2512
13 Prisco L P, Romao C P, Rizzo F, White M A and Marinkovic B A 2013 J. Mater. Sci. 48 2986
14 Cheng Y G, Liu X S, Chen H J, Chao M J and Liang E J 2015 Phys. Chem. Chem. Phys. 17 10363
15 Ari M, Miller K J, Marinkovic B A, Jardim P M, Avillez R, Rizzo F and White M A 2011 J. Sol-Gel Sci. Techn. 58 121
16 Yuan H, Wang C, Gao Q L, Ge X, Sun H, Lapidus S H, Guo J, Chao M, Jia Y and Liang E J 2020 Inorg. Chem. 59 4090
17 He X H, Qi H, Xu Q, Liu X S, Xu L and Yuan B H 2019 Chin. Phy. B 28 056501
18 Li Z Y, Song W B and Liang E J 2011 J. Phys. Chem. C 115 17806
19 Liu Y, Yuan B, Cheng Y, Liang E J, Ge X, Yuan H, Zhang Y, Guo J and Chao M J 2018 Mater. Res. Bull. 99 255
20 Xiao X, Zhou W, Liu X, Chao M J, Li Y, Zhang N, Liu Y, Li Y, Feng D and Liang E J 2015 Ceram. Int. 41 2361
21 Liu X S, ChengY G, Yuan B H, Liang E J and Zhang W F 10.1088/1674-1056/ab3435 2019 Chin. Phy. B 28 096501
22 Miller K J, Romao C P, Bieringer M, Marinkovic B A, Prisco A and White M 2012 J. Am. Chem. Soc. 96 561
23 Cheng Y, Xiao X, Liu X, Wu M M, Peng J and Hu Z B 2013 Physica B 411 173
24 Truitt R, Hermes I M, Main A, Sendecki A and Lind C 2015 Materials 8 700
25 Cheng Y, Liang Y, Mao Y, Ge Xi, Yuan B, Guo Juan, Chao M J and Liang E J 2017 Mater. Res. Bull. 85 176
26 Liu X S, Ge X H, Liang E J and Zhang W F 2017 Chin. Phys. B 26 118101
27 Liu H, Wang X, Zhang Z, Zhang Z ang Chen X 2012 Ceram. Int. 38 6349
28 Li Q, Yuan B, Liang E J, Song W, Liang E J and Yuan B 2012 Chin. Phys. B 21 046501
29 Ge X H, Mao Y C, Liu X S, Chen Y G, Yuan B H, Chao M J and Liang E J 2016 Sci. Rep. 6 24832
30 Chen D, Yuan B and Cheng Y 2016 Phys. Lett. A 380 4070
31 ChengY G, Liang Y, Ge X H, Liu X S, Yuan B H, Guo J, Chao M J and Liang E J 2016 RSC Adv. 6 53657
32 ChengY G, Liang Y, Mao Y C, Ge X H, Yuan B H, Guo J, Chao M J and Liang E J 2017 Mater. Res. Bull. 85 176
33 Schulz B, Andersen H, Al Bahri O O K and Johannessen B 2018 CrystEngComm 20 1352
34 Surjith A, James N K and Ratheesh R 2011 J. Alloys Compd. 509 9992
35 Yanase I, Ootomo R and Kobayashi H 2018 J. Therm. Anal. Calorim. 132 1
36 Husain S, Alkhtaby L A, Giorgetti E, Zoppi A and Miranda M M 2016 J. Lumin. 172 258
[1] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[2] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[3] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[4] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[5] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[6] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[7] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[8] Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2021, 30(4): 048506.
[9] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[10] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[11] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[12] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[13] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[14] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[15] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
No Suggested Reading articles found!