Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047301    DOI: 10.1088/1674-1056/abccb8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles

Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲)
1 School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
Abstract  As an alternative device for neuromorphic computing to conquer von Neumann bottleneck, the memristor serving as an artificial synapse has attracted much attention. The TaOx memristors embedded with silver nanoparticles (Ag NPs) have been fabricated to implement synaptic plasticity and to investigate the effects of Ag NPs. The TaOx memristors with and without Ag NPs are capable of simulating synaptic plasticity (PTP, STDP, and STP to LTP), learning, and memory behaviors. The conduction of the high resistance state (HRS) is driven by Schottky-emission mechanism. The embedment of Ag NPs causes the low resistance state (LRS) conduction governed by a Poole-Frenkel emission mechanism instead of a space-charge-limited conduction (SCLC) in a pure TaOx system, which is ascribed to the Ag NPs enhancing electric field to produce additional traps and to reduce Coulomb potential energy of bound electrons to assist electron transport. Consequently, the enhanced electric fields induced by Ag NPs increase the learning strength and learning speed of the synapses. Additionally, they also improve synaptic sensitivity to stimuli. The linearity of conductance modulation and the reproducibility of conductance are improved as well.
Keywords:  resistive switching      synaptic plasticity      memristor  
Received:  28 September 2020      Revised:  12 November 2020      Accepted manuscript online:  23 November 2020
PACS:  73.40.Rw (Metal-insulator-metal structures)  
  77.80.Fm (Switching phenomena)  
  87.19.lg (Synapses: chemical and electrical (gap junctions))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61674038), the Natural Science Foundation of Fujian Province, China (Grant No. 2019J01218), the Fund from the Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZR145), and the Science Fund from the Fujian Provincial Department of Industry and Information Technology of China (Grant No. 82318075).
Corresponding Authors:  Corresponding author. E-mail: Yunfeng.lai@fzu.edu.cn   

Cite this article: 

Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲) Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles 2021 Chin. Phys. B 30 047301

1 Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R, Taba B, Amir A, Flickner M D, Risk W P, Manohar R and Modha D S 2014 Science 345 668
2 Zhou L, Mao J Y, Ren Y, Yang J Q, Zhang S R, Zhou Y, Liao Q F, Zeng Y J, Shan H Q, Xu Z X, Fu J J, Wang Y, Chen X L, Lv Z Y, Han S T and Roy V A L 2018 Small 14 1800288
3 Chandrasekaran S, Simanjuntak F M, Saminathan R, Panda D and Tseng T Y 2019 Nanotechnology 30 445205
4 Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X and Miao X 2014 Sci. Rep. 4 4906
5 Wan Q Z, Sharbati M T, Erickson J R, Du Y H and Xiong F 2019 Adv. Mater. Technol. 4 1900037
6 Wang J R and Zhuge F 2019 Adv. Mater. Technol. 4 1800544
7 Li S Z, Zeng F, Chen C, Liu H Y, Tang G S, Gao S, Song C, Lin Y S, Pan F and Guo D 2013 J. Mater. Chem. C 1 5292
8 Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
9 Zhu L Q, Wan C J, Guo L Q, Shi Y and Wan Q 2014 Nat. Commun. 5 3158
10 Li E L, Lin W K, Yan Y J, Yang H H, Wang X M, Chen Q Z, Lv D X, Chen G X, Chen H P and Guo T L 2019 ACS Appl. Mater. Interfaces 11 46008
11 Sabatini B L 2007 Nature 450 1173
12 Yu S M, Gao B, Fang Z, Yu H Y, Kang J F and Wong H S P 2013 Adv. Mater. 25 1774
13 Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C and Zhu X J 2012 Adv. Funct. Mater. 22 2759
14 Wang Z R, Joshi S, Savel'ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barne M, Li G L, Xin H L, Williams R S, Xia Q F and Yang J J 2017 Nat. Mater. 16 101
15 Kim J Y, Garg A, Rymaszewski E J and Lu T M 2001 IEEE Trans. Compon. Packaging Technol. 24 526
16 Chen C, Song C, Yang J, Zeng F and Pan F 2012 Appl. Phys. Lett. 100 253509
17 Ham S, Choi S, Cho H, Na S I and Wang G 2019 Adv. Funct. Mater. 29 1806646
18 Sung C, Lim S, Kim H, Kim T, Moon K, Song J, Kim J J and Hwang H 2018 Nanotechnology 29 115203
19 Wan J D, Qiu W B, Lai Y F, Lin P J, Zheng Q, Yu J L, Cheng S Y and Zhang H Z 2020 J. Phys. D: Appl. Phys. 53 055303
20 Tian J J, Wu H J, Fan Z, Zhang Y, Pennycook S J, Zheng D F, Tan Z W, Guo H Z, Yu P, Lu X B, Zhou G F, Gao X S and Liu J M 2019 Adv. Mater. 31 1903679
21 Fan Z, Fan H, Yang L, Li P L, Lu Z X, Tian G, Huang Z F, Li Z W, Yao J X, Luo Q Y, Chen C, Chen D Y, Yan Z B, Zeng M, Lu X B, Gao X S and Liu J M 2017 J. Mater. Chem. C 5 7317
22 Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 578168
23 Lai Y F, Chen F, Zeng Z C, Lin P J, Cheng S Y and Yu J L 2017 Chin. Phys. B 26 087305
24 Lai Y F, Zeng Z C, Liao C H, Cheng S Y, Yu J L, Zheng Q and Lin P J 2016 Appl. Phys. Lett. 109 063501
25 Gogurla N, Mondal S P, Sinha A K, Katiyar A K, Banerjee W, Kundu S C and Ray S K 2013 Nanotechnology 24 345202
26 Son D I, Park D H, Kim J B, Choi J W, Kim T W, Angadi B, Yi Y and Choi W K 2011 J. Phys. Chem. C 115 2341
27 Khurana G, Misra P, Kumar N, Kooriyattil S, Scott J F and Katiyar R S 2016 Nanotechnology 27 015702
28 Chiu F C2014 Adv. Mater. Sci. Eng. 2014 578168
29 Liu Q, Guan W H, Long S B, Jia R, Liu M and Chen J N 2008 Appl. Phys. Lett. 92 012117
30 Shvets V A, Aliev V S, Gritsenko D V, Shaimeev S S, Fedosenko E V, Rykhlitski S V, Atuchin V V, Gritsenko V A, Tapilin V M and Wong H 2008 J. Non-Cryst. Solids 354 3025
31 Gao L W, Li Y H, Li Q, Song Z X and Ma F 2017 Nanotechnology 28 215201
32 Upadhyay N K, Joshi S and Yang J J 2016 Sci. China-Inf. Sci. 59 061404
33 Tang J S, Yuan F, Shen X K, Wang Z R, Rao M Y, He Y Y, Sun Y H, Li X Y, Zhang W B, Li Y J, Gao B, Qian H, Bi G Q, Song S, Yang J J and Wu H Q 2019 Adv. Mater. 31 1902761
34 Lynch M A 2004 Physiol. Rev. 84 87
35 Bao J X, Kandel E R and Hawkins R D 1997 Science 275 969
36 Froemke R C and Dan Y 2002 Nature 416 433
37 Chang T, Jo S H and Lu W 2011 Acs Nano 5 7669
38 Ebbinghaus H 2013 Ann. Neurosci. 20 155
39 Wang Z W, Yin M H, Zhang T, Cai Y M, Wang Y Y, Yang Y C and Huang R 2016 Nanoscale 8 14015
[1] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
[2] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[3] SBT-memristor-based crossbar memory circuit
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚). Chin. Phys. B, 2021, 30(6): 068402.
[4] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[5] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[6] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[7] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[8] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[9] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bin Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[10] Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device
Jin-Long Jiao(焦金龙), Qiu-Hong Gan(甘秋宏), Shi Cheng(程实), Ye Liao(廖晔), Shao-Ying Ke(柯少颖), Wei Huang(黄巍), Jian-Yuan Wang(汪建元), Cheng Li(李成), and Song-Yan Chen(陈松岩). Chin. Phys. B, 2021, 30(11): 118701.
[11] A memristive map with coexisting chaos and hyperchaos
Sixiao Kong(孔思晓), Chunbiao Li(李春彪), Shaobo He(贺少波), Serdar Çiçek, and Qiang Lai(赖强). Chin. Phys. B, 2021, 30(11): 110502.
[12] Optically-controlled resistive switching effectsof CdS nanowire memtransistor
Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2021, 30(11): 116105.
[13] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[14] TiOx-based self-rectifying memory device for crossbar WORM memory array applications
Li-Ping Fu(傅丽萍), Xiao-Qiang Song(宋小强), Xiao-Ping Gao(高晓平), Ze-Wei Wu(吴泽伟), Si-Kai Chen(陈思凯), and Ying-Tao Li(李颖弢). Chin. Phys. B, 2021, 30(1): 016103.
[15] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[1] YAN SHAO-LIN, YANG BING-CHUAN, RAN ZHONG-YUAN, LIU JING-QING, ZHAO ZHONG-XIAN, CAI PEI-XIN, GU WEI-FANG, YE HONG-JUAN, HUANG YE-XIAO, FU ROU-LI, LU XIAO-FENG, SHI GUO-LIANG. THE SCREENING EFFECT OF PHONON MODES IN HIGH-Tc OXIDE SUPERCONDUCTOR[J]. Acta Phys. Sin. (Overseas Edition), 1993, 2(10): 754 -763 .
[2] Hou Jun-da, Zhang Tao, Tang Bao-yin, P. K. Chu, I. G. Brown. GUIDING OF PLASMA BY ELECTRIC FIELD AND MAGNETIC FIELD[J]. Chin. Phys., 2001, 10(5): 424 -428 .
[3] Zhou Da-Yong, Lan Qing, Kong Yun-Chuan, Miao Zhen-Hua, Feng Song-Lin, Niu Zhi-Chuan. Atomic hydrogen induced step bunching and fabrication of quantum wire arrays on GaAs (311)A substrate by molecular beam epitaxy[J]. Chin. Phys., 2003, 12(2): 218 -221 .
[4] Su Guo-Lin, Ren Xue-Guang, Zhang Shu-Feng, Ning Chuan-Gang, Zhou Hui, Li Bin, Li Gui-Qin, Deng Jing-Kang. Experimental and calculated momentum densities for the complete valence orbitals of the antimicrobial agent diacetyl[J]. Chin. Phys., 2005, 14(10): 1966 -1973 .
[5] Wang Gang, Liang Xin-Gang. Development and evolution of flow over three-dimensional cylinder[J]. Chin. Phys., 2005, 14(7): 1392 -1397 .
[6] Zhang Jian-Min, Xu Ke-Wei. Evaluation of multiaxial stress in textured cubic films by x-ray diffraction[J]. Chin. Phys., 2005, 14(9): 1866 -1872 .
[7] Cai Da-Feng, Gu Yu-Qiu, Zheng Zhi-Jian, Zhou Wei-Min, Jiao Chun-Ye, Chen Hao, Wen Tian-Shu, Chunyu Shu-Tai. Effects of atomic number Z on the energy distribution of hot electrons generated by femtosecond laser interaction with metallic targets[J]. Chin. Phys., 2006, 15(10): 2363 -2367 .
[8] Xu Wen-Cheng, Gao Jie-Li, Liang Zhan-Qiang, Chen Qiao-Hong, Liu Song-Hao. Supercontinuum spectra generation in the single-mode optical fibre with concave dispersion profile[J]. Chin. Phys., 2006, 15(4): 715 -720 .
[9] Yu Jie, Wang Sen-Ming, Yuan Kai-Jun, Cong Shu-Lin. Photoionization of NaK molecule with a double-well potential in femtosecond pump--probe pulse laser fields[J]. Chin. Phys., 2006, 15(9): 1996 -2001 .
[10] Dai Chang-Jian, Li Shi-Ben. Saturation effects on Ba 6pnl (l=0,2) and 6pnk (|M|=0,1) autoionization spectra[J]. Chin. Phys., 2007, 16(2): 382 -391 .