Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034202    DOI: 10.1088/1674-1056/abccb2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions

Peng Dong(董鹏)1,2,3, Gaojun Wang(王高俊)1, and Jie Cheng(程杰)2,
1 College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
Abstract  The photonic spin Hall effect (SHE) holds great potential applications in manipulating spin-polarized photons. However, the SHE is generally very weak, and previous studies of amplifying photonic SHE were limited to the incident light in a specific wavelength range. In this paper, we propose a four-layered nanostructure of prism-graphene-air-substrate, and the enhanced photonic SHE of reflected light in broadband range of 0 THz-500 THz is investigated theoretically. The spin shift can be dynamically modulated by adjusting the thickness of air gap, Fermi energy of graphene, and also the incident angle. By optimizing the structural parameter of this structure, the giant spin shift (almost equal to its upper limit, half of the incident beam waist) in broadband range is achieved, covering the terahertz, infrared, and visible range. The difference is that in the terahertz region, the Brewster angle corresponding to the giant spin shift is larger than that of infrared range and visible range. These findings provide us with a convenient and effective way to tune the photonic SHE, and may offer an opportunity for developing new tunable photonic devices in broadband range.
Keywords:  photonic spin Hall effect      graphene      spin shift  
Received:  08 October 2020      Revised:  07 November 2020      Accepted manuscript online:  23 November 2020
PACS:  42.25.-p (Wave optics)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.79.-e (Optical elements, devices, and systems)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11405089), the General Program of the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171440), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. SJKY19\textunderscore 0779), and the Natural Science Foundation of Nanjing University of Posts and Telecommunications, China (Grant Nos. NY218039 and NY220030).
Corresponding Authors:  Corresponding author. E-mail: chengj@njupt.edu.cn   

Cite this article: 

Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰) Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions 2021 Chin. Phys. B 30 034202

1 Onada M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 93 083901
2 Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and Macdonald A H 2004 Phys. Rev. Lett. 92 126603
3 Bliokh K Y, Rodr\'íguez-Fortu\vno F J, Nori F and Zayats A V 2015 Nat. Photon. 9 796
4 Bliokh K Y and Bliokh Y P 2006 Phys. Rev. Lett. 96 073903
5 Cardano F and Marrucci L 2015 Nat. Photon. 9 776
6 Bliokh K Y and Bliokh Y P 2007 Phys. Rev. E 75 066609
7 Bliokh K Y, Dressel J and Nori F 2014 New J. Phys. 16 093037
8 Hosten O and Kwiat P G 2008 Science 319 787
9 Menard J, Mattacchione A E, Betz M and Van Driel H M 2009 Opt. Lett. 34 2312
10 Aiello A and Woerdman J P 2008 Opt. Lett. 33 1437
11 Luo H L, Ling X H, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 033801
12 Tang M, Zhou X X, Luo H L and Wen S C 2012 Chin. Phys. B 21 124201
13 Ling X H, Luo H L, Tang M and Wen S C 2012 Chin. Phys. Lett. 29 074209
14 Aiello A, Lindlein N, Marquardt C and Leuchs G 2009 Phys. Rev. Lett. 103 100401
15 Jiang X, Wang Q K, Guo J, Zhang J, Chen S Q, Dai X Y and Xiang Y J 2018 J. Phys. D: Appl. Phys. 51 145104
16 Li J, Tang T T, Luo L and Yao J Q 2018 Carbon 134 293
17 Zhang W S, Wu W J, Chen S Z, Zhang J, Ling X H, Shu W X, Luo H L and Wen S C 2018 Photon. Res. 6 511
18 Zhou X X, Ling X H, Xiao Z C, Low T, Al\`u A, Zhang B L and Sun H D 2019 Phys. Rev. B 100 115429
19 Jiang X, Tang J, Li Z F, Liao Y L, Jiang L Y, Dai X Y and Xiang Y J 2019 J. Phys. D: Appl. Phys. 52 045401
20 Tang M, Zhou X X, Xiao Z C, Luo H L and Wen S C 2013 Chin. Phys. B 22 034101
21 Qiu X, Zhang Z, Xie L, Qiu J, Gao F and Du J 2015 Opt. Lett. 40 1018
22 Zhu W G and She W L 2015 Opt. Lett. 40 2961
23 Luo L and Tang T T 2017 Superlattice Microst. 109 259
24 Tan X J and Zhu X S 2016 Opt. Lett. 41 2478
25 Qin Z R, Yue C, Lang Y P and Liu Q G 2018 Opt. Commun. 426 16
26 Xiang Y J, Jiang X, You Q, Guo J and Dai X Y 2017 Photon. Res. 5 467
27 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
28 Hu H, Zhai F, Hu D B, Li Z J, Bai B, Yang X X and Dai Q 2015 Nanoscale 7 19493
29 Vakil A and Engheta N 2011 Science 332 1291
30 Bai X X, Tang L L, Lu W Q, Wei X Z, Liu S, Liu Y, Sun X D, Shi H F and Lu Y G 2017 Opt. Lett. 42 4087
31 Zhou X X, Ling X H, Luo H L and Wen S C 2012 Appl. Phys. Lett. 101 251602
32 Gao C and Guo B 2018 Optik 158 850
33 Cheng M, Fu P, Tang X T, Chen S Y, Chen X Y, LinY T and Feng S Y 2018 J. Opt. Soc. Am. B 35 1829
34 Wu Y D, Sheng L J, Xie L G, Li S X, Nie P, Chen Y, Zhou X X and Ling X H 2020 Carbon 166 396
35 Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410
36 Digital Library of Mathematical Functions, http://dlmf.nist.gov, National Institute of Standard and Technology 2010
37 Zhan T R, Shi X, Dai Y Y, Liu X H and Zi J 2013 J. Phys.: Conden. Matter 25 215301
38 Jian A Q and Zhang X M 2013 IEEE J. Sel. Top. Quantum. 19 9000310
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!