Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034202    DOI: 10.1088/1674-1056/abccb2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions

Peng Dong(董鹏)1,2,3, Gaojun Wang(王高俊)1, and Jie Cheng(程杰)2,
1 College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
Abstract  The photonic spin Hall effect (SHE) holds great potential applications in manipulating spin-polarized photons. However, the SHE is generally very weak, and previous studies of amplifying photonic SHE were limited to the incident light in a specific wavelength range. In this paper, we propose a four-layered nanostructure of prism-graphene-air-substrate, and the enhanced photonic SHE of reflected light in broadband range of 0 THz-500 THz is investigated theoretically. The spin shift can be dynamically modulated by adjusting the thickness of air gap, Fermi energy of graphene, and also the incident angle. By optimizing the structural parameter of this structure, the giant spin shift (almost equal to its upper limit, half of the incident beam waist) in broadband range is achieved, covering the terahertz, infrared, and visible range. The difference is that in the terahertz region, the Brewster angle corresponding to the giant spin shift is larger than that of infrared range and visible range. These findings provide us with a convenient and effective way to tune the photonic SHE, and may offer an opportunity for developing new tunable photonic devices in broadband range.
Keywords:  photonic spin Hall effect      graphene      spin shift  
Received:  08 October 2020      Revised:  07 November 2020      Accepted manuscript online:  23 November 2020
PACS:  42.25.-p (Wave optics)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.79.-e (Optical elements, devices, and systems)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11405089), the General Program of the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171440), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. SJKY19\textunderscore 0779), and the Natural Science Foundation of Nanjing University of Posts and Telecommunications, China (Grant Nos. NY218039 and NY220030).
Corresponding Authors:  Corresponding author. E-mail: chengj@njupt.edu.cn   

Cite this article: 

Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰) Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions 2021 Chin. Phys. B 30 034202

1 Onada M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 93 083901
2 Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and Macdonald A H 2004 Phys. Rev. Lett. 92 126603
3 Bliokh K Y, Rodr\'íguez-Fortu\vno F J, Nori F and Zayats A V 2015 Nat. Photon. 9 796
4 Bliokh K Y and Bliokh Y P 2006 Phys. Rev. Lett. 96 073903
5 Cardano F and Marrucci L 2015 Nat. Photon. 9 776
6 Bliokh K Y and Bliokh Y P 2007 Phys. Rev. E 75 066609
7 Bliokh K Y, Dressel J and Nori F 2014 New J. Phys. 16 093037
8 Hosten O and Kwiat P G 2008 Science 319 787
9 Menard J, Mattacchione A E, Betz M and Van Driel H M 2009 Opt. Lett. 34 2312
10 Aiello A and Woerdman J P 2008 Opt. Lett. 33 1437
11 Luo H L, Ling X H, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 033801
12 Tang M, Zhou X X, Luo H L and Wen S C 2012 Chin. Phys. B 21 124201
13 Ling X H, Luo H L, Tang M and Wen S C 2012 Chin. Phys. Lett. 29 074209
14 Aiello A, Lindlein N, Marquardt C and Leuchs G 2009 Phys. Rev. Lett. 103 100401
15 Jiang X, Wang Q K, Guo J, Zhang J, Chen S Q, Dai X Y and Xiang Y J 2018 J. Phys. D: Appl. Phys. 51 145104
16 Li J, Tang T T, Luo L and Yao J Q 2018 Carbon 134 293
17 Zhang W S, Wu W J, Chen S Z, Zhang J, Ling X H, Shu W X, Luo H L and Wen S C 2018 Photon. Res. 6 511
18 Zhou X X, Ling X H, Xiao Z C, Low T, Al\`u A, Zhang B L and Sun H D 2019 Phys. Rev. B 100 115429
19 Jiang X, Tang J, Li Z F, Liao Y L, Jiang L Y, Dai X Y and Xiang Y J 2019 J. Phys. D: Appl. Phys. 52 045401
20 Tang M, Zhou X X, Xiao Z C, Luo H L and Wen S C 2013 Chin. Phys. B 22 034101
21 Qiu X, Zhang Z, Xie L, Qiu J, Gao F and Du J 2015 Opt. Lett. 40 1018
22 Zhu W G and She W L 2015 Opt. Lett. 40 2961
23 Luo L and Tang T T 2017 Superlattice Microst. 109 259
24 Tan X J and Zhu X S 2016 Opt. Lett. 41 2478
25 Qin Z R, Yue C, Lang Y P and Liu Q G 2018 Opt. Commun. 426 16
26 Xiang Y J, Jiang X, You Q, Guo J and Dai X Y 2017 Photon. Res. 5 467
27 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
28 Hu H, Zhai F, Hu D B, Li Z J, Bai B, Yang X X and Dai Q 2015 Nanoscale 7 19493
29 Vakil A and Engheta N 2011 Science 332 1291
30 Bai X X, Tang L L, Lu W Q, Wei X Z, Liu S, Liu Y, Sun X D, Shi H F and Lu Y G 2017 Opt. Lett. 42 4087
31 Zhou X X, Ling X H, Luo H L and Wen S C 2012 Appl. Phys. Lett. 101 251602
32 Gao C and Guo B 2018 Optik 158 850
33 Cheng M, Fu P, Tang X T, Chen S Y, Chen X Y, LinY T and Feng S Y 2018 J. Opt. Soc. Am. B 35 1829
34 Wu Y D, Sheng L J, Xie L G, Li S X, Nie P, Chen Y, Zhou X X and Ling X H 2020 Carbon 166 396
35 Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410
36 Digital Library of Mathematical Functions, http://dlmf.nist.gov, National Institute of Standard and Technology 2010
37 Zhan T R, Shi X, Dai Y Y, Liu X H and Zi J 2013 J. Phys.: Conden. Matter 25 215301
38 Jian A Q and Zhang X M 2013 IEEE J. Sel. Top. Quantum. 19 9000310
[1] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[2] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[3] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[4] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[5] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[6] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[7] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[8] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[9] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[10] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[11] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[12] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[13] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[14] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[15] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
No Suggested Reading articles found!