Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 046301    DOI: 10.1088/1674-1056/abca24
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study

Guoqing Wang(王国庆)1,2, Wenjing Qin(秦文静)1, and Jing Shi(石晶)1,†
1 Department of Physics, Jiangxi Normal University, Nanchang 330022, China; 2 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  First-principles calculations are performed to investigate the effect of strain on the electrochemical performance of Janus MoSSe monolayer. The calculation focuses on the specific capacity, intercalation potential, electronic structure, and migration behavior of Li-ion under various strains by using the climbing-image nudged elastic band method. The result shows that the specific capacity is nearly unchanged under strain. But interestingly, the tensile strain can cause the intercalation potential and Li-ion migration energy barrier increase in MoSSe monolayer, whereas the compressive strain can lead to the intercalation potential and energy barrier decreasing. Thus, the rate performance of the MoSSe anode is improved. By analyzing the potential energy surface of MoSSe surface and equilibrium adsorption distance of Li-ion, we explain the physical origin of the change in the intercalation potential and migration energy barrier. The increase of MoSSe potential energy surface and the decrease of adsorption distance caused by tensile strain are the main reason that hinders Li-ion migration.
Keywords:  Janus MoSSe monolayer      strain effect      specific capacity      migration behavior  
Received:  29 July 2020      Revised:  16 October 2020      Accepted manuscript online:  13 November 2020
PACS:  63.20.dk (First-principles theory)  
  62.25.-g (Mechanical properties of nanoscale systems)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the Education Department of Jiangxi Province, China (Grant No. GJJ160337).
Corresponding Authors:  Corresponding author. E-mail: shijing_scu@163.com   

Cite this article: 

Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶) Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study 2021 Chin. Phys. B 30 046301

1 Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
2 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
3 Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
4 Wang P, Orimo S, Matsushima T, Fujii H and Majer G 2002 Appl. Phys. Lett. 80 318
5 Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
6 Matte H S S R, Gomathi A, Manna A K, Late D J, Datta R, Pati S K and Rao C N R 2010 Angew. Chem. Int. Edit. 49 4059
7 Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Di Yuan K, Li Z and Chen W 2016 Nano Lett. 16 4903
8 Peng R, Ma Y, He Z, Huang B, Kou L and Dai Y 2019 Nano Lett. 19 1227
9 Zhang G and Zhang Y W 2017 Chin. Phys. B 26 034401
10 Mak K F and Shan J 2016 Nat. Photon. 10 216
11 Hong H, Cheng Y, Wu C, Huang C, Liu C, Yu W, Zhou X, Ma C, Wang J, Zhang Z, Zhao Y, Xiong J and Liu K 2020 Chin. Phys. B 29 077201
12 Wang H, Feng H and Li J 2014 Small 10 2165
13 Zeng F, Zhang W B and Tang B Y 2015 Chin. Phys. B 24 097103
14 Liu J, Ma Y Q, Dai Y W, Chen Y, Li Y, Tang Y N and Dai X Q 2019 Chin. Phys. B 28 107101
15 Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotechnol. 12 744
16 Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L and Lou J 2017 ACS Nano 11 8192
17 Ma X, Wu X, Wang H and Wang Y 2018 J. Mater. Chem. A 6 2295
18 Wei Y, Xu X, Wang S, Li W and Jiang Y 2019 Phys. Chem. Chem. Phys. 21 21022
19 Song B, Liu L and Yam C 2019 J. Phys. Chem. Lett. 10 5564
20 Li F, Wei W, Zhao P, Huang B and Dai Y 2017 J. Phys. Chem. Lett. 8 5959
21 Long C, Dai Y, Gong Z R and Jin H 2019 Phys. Rev. B 99 115316
22 Zhang X, Song Y, Zhang F, Fan Q, Jin H, Chen S, Jin Y, Gao S, Xiao Y, Mwankemwa N, Jiang L and Zhang W 2019 Mater. Res. Express 6 105055
23 Peng R, Ma Y, Zhang S, Huang B and Dai Y 2018 J. Phys. Chem. Lett. 9 3612
24 Guan S S, Ke S S, Yu F F, Deng H X, Guo Y and Lü H F 2019 Appl. Surf. Sci. 496 143692
25 Guo S D 2018 Phys. Chem. Chem. Phys. 20 7236
26 Wei S, Li J, Liao X, Jin H and Wei Y 2019 J. Phys. Chem. C 123 22570
27 Ma X, Yong X, Jian C C and Zhang J 2019 J. Phys. Chem. C 123 18347
28 Guan Z, Ni S and Hu S 2018 J. Phys. Chem. C 122 6209
29 Deng S, Li L, Guy O J and Zhang Y 2019 Phys. Chem. Chem. Phys. 21 18161
30 Guo R, Bu X, Wang S and Zhao G 2019 New J. Phys. 21 113040
31 Shang C, Lei X, Hou B, Wu M, Xu B, Liu G and Ouyang C 2018 J. Phys. Chem. C 122 23899
32 Zhou S H, Zhang J, Ren Z Z, Gu J F, Ren Y R, Huang S, Lin W, Li Y, Zhang Y F and Chen W K 2020 Chem. Phys. 529 110583
33 He H, Huang D, Gan Q, Hao J, Liu S, Wu Z, Pang W K, Johannessen B, Tang Y, Luo J L, Wang H and Guo Z 2019 ACS Nano 13 11843
34 Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J, Han H S, Manoharan H C, Abild-Pedersen F, Norskov J K and Zheng X 2016 Nat. Mater. 15 48
35 Zhang C, Li M Y, Tersoff J, Han Y, Su Y, Li L J, Muller D A and Shih C K 2018 Nat. Nanotechnol. 13 152
36 Zhang W J 2011 J. Power Sources 196 13
37 Ge Y F and Liu Y 2019 Chin. Phys. B 28 077104
38 Hao F and Chen X 2015 Mater. Res. Express 2 105016
39 Wang D D, Bao Y, Wu T S, Gan S Y, Han D X and Niu L 2018 Carbon 134 22
40 Hao J Y, Zheng J F, Ling F L, Chen Y K, Jing H R, Zhou T W, Fang L and Zhou M 2018 Sci. Rep. 8 2079
41 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
42 Blöchl P E 1994 Phys. Rev. B 50 17953
43 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
44 Grimme S 2006 J. Comput. Chem. 27 1787
45 Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
46 Henkelman G, Uberuaga B P and Jònsson H 2000 J. Chem. Phys. 113 9901
47 Togo A and Tanaka I 2015 Scripta Mater. 108 1
48 Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
49 Bertolazzi S, Brivio J and Kis A 2011 ACS. Nano 5 9703
50 Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agrait N and Rubio-Bollinger G 2012 Adv. Mater. 24 772
51 Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
52 Henkelman G, Arnaldsson A and Jònsson H 2006 Comp. Mater. Sci. 36 354
[1] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[2] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[3] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
[4] Versatile GaInO3-sheet with strain-tunable electronic structure, excellent mechanical flexibility, and an ideal gap for photovoltaics
Hui Du(杜慧), Shijie Liu(刘世杰), Guoling Li(李国岭), Liben Li(李立本), Xueshen Liu(刘学深), Bingbing Liu(刘冰冰). Chin. Phys. B, 2019, 28(1): 016105.
[1] ZHAO MING-XIN, WANG SHENG-LIE, SUN XIAN-PING, LI LI-YUN, ZENG XI-ZHI. MEASUREMENTS OF 129Xe NUCLEAR MAGNETIC RESONANCE IN GASEOUS, LIQUID AND SOLID XENON[J]. Acta Phys. Sin. (Overseas Edition), 1994, 3(7): 501 -505 .
[2] TAO BI-XIU, TAO BI-YOU. DYNAMICS OF PLANAR RELATIVISTIC DOMAIN WALLS[J]. Acta Phys. Sin. (Overseas Edition), 1997, 6(5): 356 -360 .
[3] Li Xiang-dong, Tan Ming-liang, Yi You-gen, Zhu Zheng-he. CALCULATION OF THE TRANSITION ENERGIES OF THE Ne-LIKE IONS WITH THE CORRECTION OF CORE POLARIZATION[J]. Chin. Phys., 2000, 9(1): 13 -18 .
[4] Gao Hong, Liu Sheng-gang. DISPERSION RELATION OF A MAGNETIZED PLASMA-FILLED BACKWARD WAVE OSCILLATOR[J]. Chin. Phys., 2000, 9(4): 274 -278 .
[5] Wang Cheng-Zhi, Fang Mao-Fa. Quantum entanglement in a two-dimensional ion trap[J]. Chin. Phys., 2003, 12(3): 287 -293 .
[6] Cao Quan-Jun, Zhang Yi-Men, Zhang Yu-Ming, Lü Hong-Liana, Wang Yue-Hu, Chang Yuan-Cheng, Tang Xiao-Yan. A CAD oriented quasi-analytical large-signal drain current model for 4H-SiC MESFETs[J]. Chin. Phys., 2007, 16(4): 1097 -1100 .
[7] W. B. Cardoso, A. T. Avelar, B.Baseia, N. G. de Almeida. Total teleportation of zero- and one-photon entangled states in running waves[J]. Chin. Phys. B, 2008, 17(1): 60 -63 .
[8] Luan Su-Zhen, Liu Hong-Xia. Quantum compact model for thin-body double-gate Schottky barrier MOSFETs[J]. Chin. Phys. B, 2008, 17(8): 3077 -3082 .
[9] Cao Wen-Hui, Yu Hai-Feng, Tian Ye, Yu Hong-Wei, Ren Yu-Feng, Chen Geng-Hua, Zhao Shi-Ping. Nb/Al-AlOx/Nb junctions with controllable critical current density for qubit application[J]. Chin. Phys. B, 2009, 18(11): 5044 -5046 .
[10] Jin Zhang-Ying, Shen Bai-Fei, Zhang Xiao-Mei, Wang Feng-Chao, Ji Liang-Liang. Energetic-ion generation by the combination of laser pressure and Coulomb explosion[J]. Chin. Phys. B, 2009, 18(12): 5395 .