Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 127102    DOI: 10.1088/1674-1056/abc7b5
Special Issue: SPECIAL TOPIC —Twistronics
SPECIAL TOPIC—Twistronics Prev   Next  

Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene

Ming Zhang(张铭)1, Yu Zhang(张渝)2, Chen Lu(卢晨)1, Wei-Qiang Chen(陈伟强)2,†, and Fan Yang(杨帆)1,
1 School of Physics, Beijing Institute of Technology, Beijing 100081, China; 2 Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  The model dependence in the study of the magic-angle twisted bilayer-graphene (MA-TBG) is an important issue in the research area. It has been argued previously that the two-band tight-binding (TB) model (per spin and valley) cannot serve as a start point for succeeding studies as it cannot correctly describe the topological aspect of the continuum-theory model near the Dirac nodes in the mini Brillouin zone (MBZ). For this purpose, we adopt the faithful TB model [Phys. Rev. B 99 195455 (2019)] with five bands (per spin and valley) as our start point, which is further equipped with extended Hubbard interactions. Then after systematic random-phase-approximation (RPA) based calculations, we study the electron instabilities of this model, including the density wave (DW) and superconductivity (SC), near the van Hove singularity (VHS). Our results are as follows. In the case neglecting the tiny inter-valley exchange interaction, the exact $SU(2)_K\times SU(2)_K'$ symmetry leads to the degeneracy between the inter-valley charge DW (CDW) and the spin DW (SDW) (which would be mixed then), and that between the singlet $d+id$-wave and triplet $p+ip$-wave topological SCs. When a realistic tiny inter-valley exchange interaction is turned on with nonzero coefficient (J H≠ 0), the SDW or CDW is favored respectively at the critical point, determined by $J_\rm H\to 0^-$ or $J_\rm H\to 0^+$. In the mean time, the degeneracy between the singlet $d+id$-wave and triplet $p+ip$-wave topological SCs is also lifted up by the tiny J H. These results are highly similar to the results of our previous study [arXiv:2003.09513] adopting the two-band TB model, with the reason lying in that both models share the same symmetry and Fermi-surface (FS) nesting character near the VHS. Such a similarity suggests that the low-energy physics of the doped MA-TBG is mainly determined by the symmetry and the shape of the FS of the doped system, and is insensitive to other details of the band structure, including the topological aspects near the Dirac nodes in the MBZ.
Keywords:  magic-angle twisted bilayer-graphene (MA-TBG)      van Hove singularity (VHS)      density wave (DW)      pairing symmetries  
Received:  29 May 2020      Revised:  21 September 2020      Accepted manuscript online:  05 November 2020
PACS:  71.10.-w (Theories and models of many-electron systems)  
  74.25.Dw (Superconductivity phase diagrams)  
  81.05.ue (Graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674025, 12074031, and 11674151) and the National Key Research and Development Program of China (Grant No. 2016YFA0300300).
Corresponding Authors:  Corresponding author. E-mail: chenwq@sustech.edu.cn Corresponding author. E-mail: yangfan_blg@bit.edu.cn   

Cite this article: 

Ming Zhang(张铭), Yu Zhang(张渝), Chen Lu(卢晨), Wei-Qiang Chen(陈伟强), and Fan Yang(杨帆) Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene 2020 Chin. Phys. B 29 127102

[1] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E C, Ashoori R and Jarillo-Herrero P Nature 556 80 DOI: 10.1038/nature261542018
[2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P Nature 556 43 DOI: 10.1038/nature261602018
[3] Bistritzer R and MacDonald A H Proc. Natl. Acad. Sci. USA 108 12233 DOI: 10.1073/pnas.11081741082011
[4] Dos Santos J L, Peres N and Neto A C Phys. Rev. Lett. 99 256802 DOI: 10.1103/PhysRevLett.99.2568022007
[5] Chittari B L, Chen G, Zhang Y, Wang F and Jung J Phys. Rev. Lett. 122 016401 DOI: 10.1103/PhysRevLett.122.0164012019
[6] Wu F, Lovorn T, Tutuc E and MacDonald A H Phys. Rev. Lett. 121 026402 DOI: 10.1103/PhysRevLett.121.0264022018
[7] Xian L, Kennes D M, Tancogne-Dejean N, Altarelli M and Rubio A Nano Lett. 19 4934 DOI: 10.1021/acs.nanolett.9b009862019
[8] Tomarken S, Cao Y, Demir A, Watanabe K, Taniguchi T, Jarillo-Herrero P and Ashoori R Phys. Rev. Lett. 123 046601 DOI: 10.1103/PhysRevLett.123.0466012019
[9] Liao Y D, Meng Z Y and Xu X Y Phys. Rev. Lett. 123 157601 DOI: 10.1103/PhysRevLett.123.1576012019
[10] Hu X, Hyart T, Pikulin D I and Rossi E Phys. Rev. Lett. 123 237002 DOI: 10.1103/PhysRevLett.123.2370022019
[11] Yudhistira I, Chakraborty N, Sharma G, Ho D Y, Laksono E, Sushkov O P, Vignale G and Adam S Phys. Rev. B 99 140302 DOI: 10.1103/PhysRevB.99.1403022019
[12] Padhi B and Phillips P W Phys. Rev. B 99 205141 DOI: 10.1103/PhysRevB.99.2051412019
[13] Ramires A and Lado J L Phys. Rev. B 99 245118 DOI: 10.1103/PhysRevB.99.2451182019
[14] Schrade C and Fu L Phys. Rev. B 100 035413 DOI: 10.1103/PhysRevB.100.0354132019
[15] Bi Z, Yuan N F Q and Fu L Phys. Rev. B 100 035448 DOI: 10.1103/PhysRevB.100.0354482019
[16] Lin Y P and Nandkishore R M Phys. Rev. B 100 085136 DOI: 10.1103/PhysRevB.100.0851362019
[17] Klebl L and Honerkamp C Phys. Rev. B 100 155145 DOI: 10.1103/PhysRevB.100.1551452019
[18] Pizarro J, Rösner M, Thomale R, Valentí R and Wehling T Phys. Rev. B 100 161102 DOI: 10.1103/PhysRevB.100.1611022019
[19] Goodwin Z A, Corsetti F, Mostofi A A and Lischner J Phys. Rev. B 100 235424 DOI: 10.1103/PhysRevB.100.2354242019
[20] Zhu Z, Sheng D and Fu L Phys. Rev. Lett. 123 087602 DOI: 10.1103/PhysRevLett.123.0876022019
[21] Wu X C, Jian C M and Xu C Phys. Rev. B 99 161405 DOI: 10.1103/PhysRevB.99.1614052019
[22] Goodwin Z A, Corsetti F, Mostofi A A and Lischner J Phys. Rev. B 100 121106 DOI: 10.1103/PhysRevB.100.1211062019
[23] Venderbos J W and Fernandes R M Phys. Rev. B 98 245103 DOI: 10.1103/PhysRevB.98.2451032018
[24] Haule M, Andrei E and Haule K2019 arXiv:1901.09852
[25] Kang J and Vafek O Phys. Rev. X 8 031088 DOI: 10.1103/PhysRevX.8.0310882018
[26] Kang J and Vafek O Phys. Rev. Lett. 122 246401 DOI: 10.1103/PhysRevLett.122.2464012019
[27] Xu X Y, Law K T and Lee P A Phys. Rev. B 98 121406 DOI: 10.1103/PhysRevB.98.1214062018
[28] Padhi B, Setty C and Phillips P W Nano Lett. 18 6175 DOI: 10.1021/acs.nanolett.8b020332018
[29] Pizarro J, Calderón M and Bascones E J. Phys. Commun. 3 035024 DOI: 10.1088/2399-6528/ab0fa92019
[30] Thomson A, Chatterjee S, Sachdev S and Scheurer M S Phys. Rev. B 98 075109 DOI: 10.1103/PhysRevB.98.0751092018
[31] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P and Senthil T Phys. Rev. B 99 075127 DOI: 10.1103/PhysRevB.99.0751272019
[32] Liu J, Liu J and Dai X Phys. Rev. B 99 155415 DOI: 10.1103/PhysRevB.99.1554152019
[33] Xie M and MacDonald A H Phys. Rev. Lett. 124 097601 DOI: 10.1103/PhysRevLett.124.0976012020
[34] Wu X C, Keselman A, Jian C M, Pawlak K A and Xu C Phys. Rev. B 100 024421 DOI: 10.1103/PhysRevB.100.0244212019
[35] Yuan N F Q and Fu L Phys. Rev. B 98 045103 DOI: 10.1103/PhysRevB.98.0451032018
[36] Codecido E, Wang Q, Koester R, Che S, Tian H, Lv R, Tran S, Watanabe K, Taniguchi T, Zhang F, Bockrath M and Ning Lau C Sci. Adv. 5 EAAW9770 DOI: 10.1126/sciadv.aaw97702019
[37] Dodaro J F, Kivelson S A, Schattner Y, Sun X Q and Wang C Phys. Rev. B 98 075154 DOI: 10.1103/PhysRevB.98.0751542018
[38] Liu C C, Zhang L D, Chen W Q and Yang F Phys. Rev. Lett. 121 217001 DOI: 10.1103/PhysRevLett.121.2170012018
[39] Fidrysiak M, Zegrodnik M and Spa\lek J Phys. Rev. B 98 085436 DOI: 10.1103/PhysRevB.98.0854362018
[40] Guo H M, Zhu X, Feng S P and Scalettar R T Phys. Rev. B 97 235453 DOI: 10.1103/PhysRevB.97.2354532018
[41] Ochi M, Koshino M and Kuroki K Phys. Rev. B 98 081102 DOI: 10.1103/PhysRevB.98.0811022018
[42] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A H, MacDonald A and Efetov D K Nature 574 653 DOI: 10.1038/s41586-019-1695-02019
[43] Huang T, Zhang L and Ma T X Sci. Bull. 64 310 DOI: 10.1016/j.scib.2019.01.0262019
[44] Rademaker L and Mellado P Phys. Rev. B 98 235158 DOI: 10.1103/PhysRevB.98.2351582018
[45] Classen L, Honerkamp C and Scherer M M Phys. Rev. B 99 195120 DOI: 10.1103/PhysRevB.99.1951202019
[46] Kennes D M, Lischner J and Karrasch C Phys. Rev. B 98 241407 DOI: 10.1103/PhysRevB.98.2414072018
[47] Isobe H, Yuan N F and Fu L2018 Phys. Rev. X 8 041041
[48] Sherkunov Y and Betouras J J Phys. Rev. B 98 205151 DOI: 10.1103/PhysRevB.98.2051512018
[49] Xu C and Balents L Phys. Rev. Lett. 121 087001 DOI: 10.1103/PhysRevLett.121.0870012018
[50] Roy B and Juri\vcić V Phys. Rev. B 99 121407 DOI: 10.1103/PhysRevB.99.1214072019
[51] Zhang L Sci. Bull. 64 495 DOI: 10.1016/j.scib.2019.03.0102019
[52] Ray S, Jung J and Das T Phys. Rev. B 99 134515 DOI: 10.1103/PhysRevB.99.1345152019
[53] Su Y and Lin S Z Phys. Rev. B 98 195101 DOI: 10.1103/PhysRevB.98.1951012018
[54] Peltonen T J, Ojajärvi R and Heikkilä T T Phys. Rev. B 98 220504 DOI: 10.1103/PhysRevB.98.2205042018
[55] Wu F, MacDonald A and Martin I Phys. Rev. Lett. 121 257001 DOI: 10.1103/PhysRevLett.121.2570012018
[56] Lian B, Wang Z and Bernevig B A Phys. Rev. Lett. 122 257002 DOI: 10.1103/PhysRevLett.122.2570022019
[57] Zhang L, Huang T, Liang Y and Ma T Mode. Phys. Lett. B 34 2050016 DOI: 10.1142/S02179849205001652020
[58] Brydon P, Abergel D S, Agterberg D and Yakovenko V M Phys. Rev. X 9 031025 DOI: 10.1103/PhysRevX.9.0310252019
[59] Angeli M, Tosatti E and Fabrizio M Phys. Rev. X 9 041010 DOI: 10.1103/PhysRevX.9.0310252019
[60] Tang Q K, Yang L, Wang D, Zhang F C and Wang Q H Phys. Rev. B 99 094521 DOI: 10.1103/PhysRevB.99.0945212019
[61] Alidoust M, Willatzen M and Jauho A P Phys. Rev. B 99 155413 DOI: 10.1103/PhysRevB.99.1554132019
[62] Wu F Phys. Rev. B 99 195114 DOI: 10.1103/PhysRevB.99.1951142019
[63] Wu F and Sarma S D Phys. Rev. B 99 220507 DOI: 10.1103/PhysRevB.99.2205072019
[64] Wang J, Mu X, Wang L and Sun M Mater. Today Phys. 9 100099 DOI: 10.1016/j.mtphys.2019.1000992019
[65] Chen L, Li H Z and Han R S J. Phys.: Cond. Matter. 31 065601 DOI: 10.1088/1361-648X/aaf6262018
[66] Liu Z, Li Y and Yang Y f Chin. Phys. B 28 077103 DOI: 10.1088/1674-1056/28/7/0771032019
[67] Choi Y W and Choi H J Phys. Rev. B 98 241412 DOI: 10.1103/PhysRevB.98.2414122018
[68] You Y Z and Vishwanath A NPJ Quantum Materials 4 1 DOI: 10.1038/s41535-019-0153-42019
[69] Gonzalez J and Stauber T Phys. Rev. Lett. 122 026801 DOI: 10.1103/PhysRevLett.122.0268012019
[70] Laksono E, Leaw J N, Reaves A, Singh M, Wang X, Adam S and Gu X Solid State Commun. 282 38 DOI: 10.1016/j.ssc.2018.07.0132018
[71] Wu F, Hwang E and Sarma S D Phys. Rev. B 99 165112 DOI: 10.1103/PhysRevB.99.1651122019
[72] Fang S C, Liu G K, Lin H Q and Huang Z B Phys. Rev. B 100 115135 DOI: 10.1103/PhysRevB.100.1151352019
[73] Wu X, Hanke W, Fink M, Klett M and Thomale R Phys. Rev. B 101 134517 DOI: 10.1103/PhysRevB.101.1345172020
[74] Lin Y P and Nandkishore R M Phys. Rev. B 98 214521 DOI: 10.1103/PhysRevB.98.2145212018
[75] Kozii V, Isobe H, Venderbos J W and Fu L Phys. Rev. B 99 144507 DOI: 10.1103/PhysRevB.99.1445072019
[76] Yuan N F, Isobe H and Fu L Nat. Commun. 10 1 DOI: 10.1038/s41467-018-07882-82019
[77] Cea T, Walet N R and Guinea F Phys. Rev. B 100 205113 DOI: 10.1103/PhysRevB.100.2051132019
[78] Harshman D R and Fiory A T J. Supercond. Nov. Magn. 33 367 DOI: 10.1007/s10948-019-05183-92020
[79] Lu C, Zhang Y, Zhang Y, Zhang M, Liu C C, Gu Z C, Chen W Q and Yang F2020 arXiv:2003.09513
[80] Koshino M, Yuan N F, Koretsune T, Ochi M, Kuroki K and Fu L Phys. Rev. X 8 031087 DOI: 10.1103/PhysRevX.8.0310872018
[81] Po H C, Zou L, Senthil T and Vishwanath A Phys. Rev. B 99 195455 DOI: 10.1103/PhysRevB.99.1954552019
[82] Zhou J H, Qin T and Shi J R Chin. Phys. Lett. 30 017401 DOI: 10.1088/0256-307X/30/1/0174012013
[83] Po H C, Zou L, Vishwanath A and Senthil T Phys. Rev. X 8 031089 DOI: 10.1103/PhysRevX.8.0310892018
[84] Bistritzer R and MacDonald A H Phys. Rev. B 81 245412 DOI: 10.1103/PhysRevB.81.2454122010
[85] Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P and Vishwanath A Nat. Commun. 10 1 DOI: 10.1038/s41467-018-07882-82019
[86] Takimoto T, Hotta T and Ueda K Phys. Rev. B 69 104504 DOI: 10.1103/PhysRevB.69.1045042004
[87] Yada K and Kontani H J. Phys. Soc. Japan 74 2161 DOI: 10.1143/JPSJ.74.21612005
[88] Kubo K Phys. Rev. B 75 224509 DOI: 10.1103/PhysRevB.75.2245092007
[89] Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H and Aoki H Phys. Rev. Lett. 101 087004 DOI: 10.1103/PhysRevLett.101.0870042008
[90] Graser S, Maier T, Hirschfeld P and Scalapino D New J. Phys. 11 025016 DOI: 10.1088/1367-2630/11/2/0250162009
[91] Maier T, Graser S, Hirschfeld P and Scalapino D Phys. Rev. B 83 100515 DOI: 10.1103/PhysRevB.83.1005152011
[92] Liu F, Liu C C, Wu K, Yang F and Yao Y Phys. Rev. Lett. 111 066804 DOI: 10.1103/PhysRevLett.111.0668042013
[93] Wu X, Yuan J, Liang Y, Fan H and Hu J Europhys. Lett. 108 27006 DOI: 10.1209/0295-5075/108/270062014
[94] Ma T, Yang F, Yao H and Lin H Q Phys. Rev. B 90 245114 DOI: 10.1103/PhysRevB.90.2451142014
[95] Zhang L D, Yang F and Yao Y Sci. Rep. 5 8203 DOI: 10.1038/srep082032015
[96] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R Science 363 1059 DOI: 10.1126/science.aav19102019
[97] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y Nature 573 91 DOI: 10.1038/s41586-019-1460-42019
[98] Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A and Pasupathy A N Nature 572 95 DOI: 10.1038/s41586-019-1431-92019
[1] Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(4): 047106.
[2] Benchmarking the simplest slave-particle theory with Hubbard dimer
Wei-Wei Yang(杨薇薇), Hong-Gang Luo(罗洪刚), Yin Zhong(钟寅). Chin. Phys. B, 2019, 28(10): 107103.
[3] Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions
Hai-Di Liu(刘海迪). Chin. Phys. B, 2019, 28(10): 107102.
[4] Electronic structure from equivalent differential equations of Hartree-Fock equations
Hai Lin(林海). Chin. Phys. B, 2019, 28(8): 087101.
[5] Phase diagram, correlations, and quantum critical point in the periodic Anderson model
Jian-Wei Yang(杨建伟), Qiao-Ni Chen(陈巧妮). Chin. Phys. B, 2018, 27(3): 037101.
[6] Novel high-K with low specific on-resistance high voltage lateral double-diffused MOSFET
Li-Juan Wu(吴丽娟), Zhong-Jie Zhang(章中杰), Yue Song(宋月), Hang Yang(杨航), Li-Min Hu(胡利民), Na Yuan(袁娜). Chin. Phys. B, 2017, 26(2): 027101.
[7] Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage
E Lotfi, H Rezania, B Arghavaninia, M Yarmohammadi. Chin. Phys. B, 2016, 25(7): 076102.
[8] Antiferromagnetism and Kondo screening on a honeycomb lattice
Lin Heng-Fu, Tao Hong-Shuai, Guo Wen-Xiang, Liu Wu-Ming. Chin. Phys. B, 2015, 24(5): 057101.
[9] Tight-binding electron-phonon coupling and band renormalization in graphene
Zhang De-Sheng, Kang Guang-Zhen, Li Jun. Chin. Phys. B, 2015, 24(1): 017301.
[10] Interaction and spin-orbit effects on a kagome lattice at 1/3 filling
Liu Hai-Di, Chen Yao-Hua, Lin Heng-Fu, Tao Hong-Shuai, Wu Jian-Hua. Chin. Phys. B, 2014, 23(7): 077101.
[11] Partial-SOI high voltage laterally double-diffused MOS with a partially buried n+-layer
Hu Sheng-Dong, Wu Xing-He, Zhu Zhi, Jin Jing-Jing, Chen Yin-Hui. Chin. Phys. B, 2014, 23(6): 067101.
[12] Disappearance of the Dirac cone in silicene due to the presence of an electric field
D. A. Rowlands, Zhang Yu-Zhong. Chin. Phys. B, 2014, 23(3): 037101.
[13] Novel high-voltage power lateral MOSFET with adaptive buried electrodes
Zhang Wen-Tong, Wu Li-Juan, Qiao Ming, Luo Xiao-Rong, Zhang Bo, Li Zhao-Ji. Chin. Phys. B, 2012, 21(7): 077101.
[14] Improvement on the breakdown voltage for silicon-on-insulator devices based on epitaxy-separation by implantation oxygen by a partial buried n+-layer
Hu Sheng-Dong,Wu Li-Juan,Zhou Jian-Lin,Gan Ping,Zhang Bo,Li Zhao-Ji. Chin. Phys. B, 2012, 21(2): 027101.
[15] Simulation of the f–d transitions of lanthanide ions in YPO4 using quantum-chemical calculations
Hu Liu-Sen, Wen Jun, Yin Min, Xia Shang-Da. Chin. Phys. B, 2012, 21(1): 017801.
No Suggested Reading articles found!