Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 120506    DOI: 10.1088/1674-1056/abc679
GENERAL Prev   Next  

Quantum quenches in the Dicke model: Thermalization and failure of the generalized Gibbs ensemble

Xiao-Qiang Su(苏晓强)† and You-Quan Zhao(赵有权)
College of Physics and Information Engineering, ShanXi Normal University, Linfen 041004, China
Abstract  Quantum quenches in the Dicke model were studied both in the thermodynamic limit and the finite systems. For the integrable situation in the thermodynamic limit, the generalized Gibbs ensemble can effectively describe the energy-level occupations for the quench within the normal phase, but it fails for the quench to the superradiant phase. For the finite systems which are considered non-integrable, the post quench systems were studied by comparing with the thermal ensembles. The canonical ensembles are directly available for the quench within the normal phase. With the increasing of the target coupling strength over the equilibrium phase transition critical point, sudden changes take place for the effective temperature and the distance to the thermal ensembles. The thermalization was also studied by comparing with the results of the microcanonical ensembles.
Keywords:  quantum quench      generalized Gibbs ensemble      thermalization      Dicke model  
Received:  22 September 2020      Revised:  18 October 2020      Accepted manuscript online:  31 October 2020
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  02.30.Ik (Integrable systems)  
  64.70.qd (Thermodynamics and statistical mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11147110) and the Natural Science Youth Foundation of Shanxi, China (Grant No. 2011021003).
Corresponding Authors:  Corresponding author. E-mail: suxq@mail.ustc.edu.cn   

Cite this article: 

Xiao-Qiang Su(苏晓强) and You-Quan Zhao(赵有权) Quantum quenches in the Dicke model: Thermalization and failure of the generalized Gibbs ensemble 2020 Chin. Phys. B 29 120506

[1] Kinoshita T, Wenger T and Weiss D S Nature 440 900 DOI: 10.1038/nature046932006
[2] Tang Y, Kao W, Li K Y, Seo S, Mallayya K, Rigol M, Gopalakrishnan S and Lev B L 2018 Phys. Rev. X 8 021030 DOI: 10.1103/PhysRevX.8.021030
[3] Greiner M, Mandel O, Hänsch T W and Bloch I Nature 419 51 DOI: 10.1038/nature009682002
[4] Rigol M Phys. Rev. A 80 053607 DOI: 10.1103/PhysRevA.80.0536072009
[5] Khatami E, Pupillo G, Srednicki M and Rigol M Phys. Rev. Lett. 111 050403 DOI: 10.1103/PhysRevLett.111.0504032013
[6] Sorg S, Vidmar L, Pollet L and Heidrich-Meisner F Phys. Rev. A 90 033606 DOI: 10.1103/PhysRevA.90.0336062014
[7] Gogolin C, Mueller M P and Eisert J Phys. Rev. Lett. 106 040401 DOI: 10.1103/PhysRevLett.106.0404012011
[8] Bocchieri P and Loinger A Phys. Rev. 107 337 DOI: 10.1103/PhysRev.107.3371957
[9] Percival I C J. Math. Phys. 2 235 DOI: 10.1063/1.17037051961
[10] Cassidy A C, Clark C W and Rigol M 2011 Phys. Rev. Lett. 106 140405 DOI: 10.1103/PhysRevLett.106.140405
[11] Linden N, Popescu S, Short A J and Winter A Phys. Rev. E 79 061103 DOI: 10.1103/PhysRevE.79.0611032009
[12] Goldstein S, Lebowitz J L, Tumulka R and Zangh\`í N Phys. Rev. Lett. 96 050403 DOI: 10.1103/PhysRevLett.96.0504032006
[13] Popescu S, Short A J and Winter A 2006 Nat. Phys. 2 754 DOI: 10.1038/nphys444
[14] Rigol M, Dunjko V, Yurovsky V and Olshanii M Phys. Rev. Lett. 98 050405 DOI: 10.1103/PhysRevLett.98.0504052007
[15] Jaynes E T Phys. Rev. 106 620 DOI: 10.1103/PhysRev.106.6201957
[16] Jaynes E T Phys. Rev. 108 171 DOI: 10.1103/PhysRev.108.1711957
[17] Berges J, Bors\`anyi S and Wetterich C Phys. Rev. Lett. 93 142002 DOI: 10.1103/PhysRevLett.93.1420022004
[18] Marcuzzi M, Marino J, Gambassi A and Silva A Phys. Rev. Lett. 111 197203 DOI: 10.1103/PhysRevLett.111.1972032013
[19] Gring M, Kuhnert M, Langen T, Kitagawa T, Rauer B, Schreitl M, Mazets I, Smith D A, Demler E and Schmiedmayer J Science 337 1318 DOI: 10.1126/science.12249532012
[20] Srednicki M 1994 Phys. Rev. E 50 888 DOI: 10.1103/PhysRevE.50.888
[21] Srednicki M J. Phys. A: Math. Gen. 32 1163 DOI: 10.1088/0305-4470/32/7/0071999
[22] Rigol M, Dunjko V and Olshanii M Nature 452 854 DOI: 10.1038/nature068382008
[23] Rigol M Phys. Rev. Lett. 103 100403 DOI: 10.1103/PhysRevLett.103.1004032009
[24] Rigol M and Santos L F Phys. Rev. A 82 011604 DOI: 10.1103/PhysRevA.82.0116042010
[25] D'Alessio L, Kafri Y, Polkovnikov A and Rigol M Adv. Phys. 65 239 DOI: 10.1080/00018732.2016.11981342016
[26] Deutsch J M 1991 Phys. Rev. A 43 2046 DOI: 10.1103/PhysRevA.43.2046
[27] Biroli G, Kollath C and Läuchli A M Phys. Rev. Lett. 105 250401 DOI: 10.1103/PhysRevLett.105.2504012010
[28] Steinigeweg R, Khodja A, Niemeyer H, Gogolin C and Gemmer J Phys. Rev. Lett. 112 130403 DOI: 10.1103/PhysRevLett.112.1304032014
[29] Langen T, Erne S, Geiger R, Rauer B, Schweigler T, Kuhnert M, Rohringer W, Mazets I E, Gasenzer T and Schmiedmayer J Science 348 207 DOI: 10.1126/science.12570262015
[30] Ilievski E, Quinn E and Caux J S Phys. Rev. B 95 115128 DOI: 10.1103/PhysRevB.95.1151282017
[31] Muralidharan S, Lochan K and Shankaranarayanan S Phys. Rev. E 97 012142 DOI: 10.1103/PhysRevE.97.0121422018
[32] Vidmar L and Rigol M2016 J. Stat. Mech. 064007
[33] Guryanova Y, Popescu S, Short A J, Silva R and Skrzypczyk P Nat. Comm. 7 12049 DOI: 10.1038/ncomms120492016
[34] Goldstein G and Andrei N Phys. Rev. A 90 043625 DOI: 10.1103/PhysRevA.90.0436252014
[35] Pozsgay B, Mestyán M, Werner M A, Kormos M, Zaránd G and Takács G Phys. Rev. Lett. 113 117203 DOI: 10.1103/PhysRevLett.113.1172032014
[36] Mierzejewski M, Prelovšek P and Prosen T Phys. Rev. Lett. 113 020602 DOI: 10.1103/PhysRevLett.113.0206022014
[37] Haroche S, Brune M and Raimond J M Nat. Phys. 16 243 DOI: 10.1038/s41567-020-0812-12020
[38] Zhu H J, Zhang G F, Zhuang L and Liu W M Phys. Rev. Lett. 121 220403 DOI: 10.1103/PhysRevLett.121.2204032018
[39] Fan K M and Zhang G F Eur. Phys.J. D 68 163 DOI: 10.1140/epjd/e2014-50145-02014
[40] Zhang G F Chin. Phys. 16 1855 DOI: 10.1088/1009-1963/16/7/0082007
[41] Zhang G F and Liu J Chin. Phys. 16 3595 DOI: 10.1088/1009-1963/16/12/0072007
[42] Breeze J D, Salvadori E, Sathian J, Alford N M and Kay C W M npj Quantum Information 3 1 DOI: 10.1038/s41534-016-0002-22017
[43] Dicke R H Phys. Rev. 93 99 DOI: 10.1103/PhysRev.93.991954
[44] Hepp K and Lieb E H Ann. Phys. N.Y. 76 360 DOI: 10.1016/0003-4916(73)90039-01973
[45] Zhu H J, Xu K, Zhang G F and Liu W M Phys. Rev. Lett. 125 050402 DOI: 10.1103/PhysRevLett.125.0504022020
[46] Kirton P, Roses M M, Keeling J, Dalla T and Emanuele G Adv. Quantum Technol. 2 1970013 DOI: 10.1002/qute.v2.1-22019
[47] Paraan F N C and Silva A Phys. Rev. E 80 061130 DOI: 10.1103/PhysRevE.80.0611302009
[48] Rela\ no A Phys. Rev. Lett. 121 030602 DOI: 10.1103/PhysRevLett.121.0306022018
[49] Kloc M, Stránsk\'y P and Cejnar P Phys. Rev. A 98 013836 DOI: 10.1103/PhysRevA.98.0138362018
[50] Shen L T, Shi Z C, Yang Z B, Wu H Z, Zhong Z R and Zheng S B EPJ Quantum Technol. 7 1 DOI: 10.1140/epjqt/s40507-019-0077-82020
[51] Ray S, Ghosh A and Sinha S Phys. Rev. E 94 032103 DOI: 10.1103/PhysRevE.94.0321032016
[52] Chen X M and Wang C Chin. Phys. B 28 050502 DOI: 10.1088/1674-1056/28/5/0505022019
[53] Holstein T and Primakoff H Phys. Rev. 58 1098 DOI: 1949
[54] Ressayre E and Tallet A Phys. Rev. A 11 981 DOI: 10.1103/PhysRevA.11.9811975
[55] Zhu H J, Zhang G F and Fan H Sci. Rep. 6 19751 DOI: 10.1038/srep197512016
[56] Emary C and Brandes T Phys. Rev. E 67 066203 DOI: 10.1103/PhysRevE.67.0662032003
[57] Haake F1991 Quantum Signatures of Chaos(Berlin: Springer-Verlag)
[59] Guhr T, Müller-Groeling A and Weidenmüller H A Phys. Rep. 299 189 DOI: 10.1016/S0370-1573(97)00088-41998
[60] Reimann P Phys. Rev. Lett. 101 190403 DOI: 10.1103/PhysRevLett.101.1904032008
[61] Riera A, Gogolin C and Eisert J Phys. Rev. Lett. 108 080402 DOI: 10.1103/PhysRevLett.108.0804022012
[62] Rao C R Questiió 19 23 https://dialnet.unirioja.es/servlet/articulo?codigo=23626891995
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Behaviors of thermalization for the Fermi-Pasta-Ulam-Tsingou system with small number of particles
Zhenjun Zhang(张振俊), Jing Kang(康静), and Wen Wen(文文). Chin. Phys. B, 2021, 30(6): 060505.
[3] Zitterbewegung of Dirac quasiparticles emerged in a Su-Schrieffer–Heeger lattice
Yue Hu(胡玥), Zheng-Xin Guo(郭政鑫), Ze-Ming Zhong(钟泽明), and Zhi Li(李志). Chin. Phys. B, 2020, 29(11): 110302.
[4] Identifying the closeness of eigenstates in quantum many-body systems
Hai-bin Li(李海彬), Yang Yang(杨扬), Pei Wang(王沛), Xiao-guang Wang(王晓光). Chin. Phys. B, 2017, 26(8): 080502.
[5] Thermalization time of thin metal film heated by short pulse laser
Xu Hong-Yu (徐红玉), Zhang Yuan-Chong (张元冲), Song Ya-Qin (宋亚勤), Chen Dian-Yun (陈殿云). Chin. Phys. B, 2004, 13(10): 1758-1765.
No Suggested Reading articles found!