Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017301    DOI: 10.1088/1674-1056/abc54c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices

Shao-Jin Qi(齐少锦)1,2,†, Xuan Sun(孙璇)1,†, Xi Yan(严曦)1,2, Hui Zhang(张慧)1,2, Hong-Rui Zhang(张洪瑞)1,2, Jin-E Zhang(张金娥)1,2, Hai-Lin Huang(黄海林)1,2, Fu-Rong Han(韩福荣)1,2, Jing-Hua Song(宋京华)1,2, Bao-Gen Shen(沈保根)1,2, and Yuan-Sha Chen(陈沅沙)1,2,
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The electric gating on the transport properties of two-dimensional electron gas (2DEG) at the interface of LaAlO3/SrTiO3 (LAO/STO) heterostructure has attracted great research interest due to its potential application in field-effect devices. Most of previous works of gate effect were focused on the LAO/STO heterostructure containing only one conductive interface. Here, we systematically investigated the gate effect on high-quality LAO/STO superlattices (SLs) fabricated on the TiO2-terminated (001) STO substrates. In addition to the good metallicity of all SLs, we found that there are two types of charge carriers, the majority carriers and the minority carriers, coexisting in the SLs. The sheet resistance of the SLs with a fixed thickness of the LAO layer increases monotonically as the thickness of the STO layer increases. This is derived from the dependence of the minority carrier density on the thickness of STO. Unlike the LAO/STO heterostructure in which minority and majority carriers are simultaneously modulated by the gate effect, the minority carriers in the SLs can be tuned more significantly by the electric gating while the density of majority carriers is almost invariable. Thus, we consider that the minority carriers may mainly exist in the first interface near the STO substrate that is more sensitive to the back-gate voltage, and the majority carriers exist in the post-deposited STO layers. The SL structure provides the space separation for the multichannel conduction in the 2DEG, which opens an avenue for the design of field-effect devices based on LAO/STO heterostructure.
Keywords:  superlattices      gate effect      minority carriers      majority carriers  
Revised:  17 September 2020      Published:  23 December 2020
PACS:  73.21.Cd (Superlattices)  
  73.40.-c (Electronic transport in interface structures)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300701, 2017YFA0206300, 2017YFA0303601, and 2018YFA0305704), the National Natural Science Foundation of China (Grant Nos. 11520101002, 51590880, 11674378, 11934016, and 51972335), and the Key Program of the Chinese Academy of Sciences.
Corresponding Authors:  These authors contributed to this work equally. Corresponding author. E-mail: yschen@aphy.iphy.ac.cn   

Cite this article: 

Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙) Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices 2021 Chin. Phys. B 30 017301

1 Ohtomo A and Hwang H Y 2004 Nature 427 423
2 Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
3 Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
4 Brinkman A, Huijben M, van Zalk M, Huijben J, Zeitler U, Maan J C, van der Wiel W G, Rijnders G, Blank and Hilgenkamp H 2007 Nat. Mater. 6 493
5 Ngo T D N, Chang J W, Lee K, Han S, Lee J S, Kim Y H, Jung M H, Doh Y J, Choi M S, Song J and Kim J 2015 Nat. Commun. 6 8035
6 Zhang H R, Yun Y, Zhang X J, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y S, Liu W, Hu F X, Liu B G, Shen B G, Han W and Sun J R 2018 Phys. Rev. Lett. 121 116803
7 Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 1942
8 Caviglia A D, Gabay M, Gariglio S, Reyren N, Cancellieri C and Triscone J M 2010 Phys. Rev. Lett. 104 126803
9 Herranz G, Singh G, Bergeal N, Jouan A, Lesueur J, Gazquez J, Varela M, Scigaj M, Dix N, Sanchez F and Fontcuberta J 2015 Nat. commun. 6 6028
10 Song Q, Zhang H R, Su T, Yuan W, Chen Y Y, Xing W Y, Shi J, Sun J R and Han W 2017 Sci. Adv. 3 e1602312
11 Wang Y, Ramaswamy R, Motapothula M, Narayanapillai K, Zhu D P, Yu J W, Venkatesan T and Yang H 2017 Nano Lett. 17 7659
12 Lee H, Campbell N, Lee J, Asel T J, Paudel T R, Zhou H, Lee J W, Noesges B, Seo J, Park B, Brillson L J, Oh S H, Tsymbal E Y, Rzchowski M S and Eom C B 2018 Nat. Mater. 17 231
13 Kim J S, Seo S S A, Chisholm M F, Kremer R K, Habermeier H U, Keimer B and Lee H N 2010 Phys. Rev. B 82 201407
14 Gunkel F, Bell C, Inoue H, Kim B, Swartz A G, Merz T A, Hikita Y, Harashima S, Sato H K, Minohara M, Hoffmann-Eifert S, Dittmann R and Hwang H Y 2016 Phys. Rev. X 6 031035
15 Joshua A, Pecker S, Ruhman J, Altman E and Ilani S 2012 Nat. Commun. 3 1126
16 Ben Shalom M, Ron A, Palevski A and Dagan Y 2010 Phys. Rev. Lett. 105 206401
17 Chen Y Z, Bovet N, Trier F, Christensen D V, Qu F M, Andersen N H, Kasama T Zhang W, Giraud R, Dufouleur J, Jespersen T S, Sun J R, Smith A, Nygard J, Lu L, Buchner B, Shen B G, Linderothand S and Pryds N 2013 Nat. Commun. 4 1371
18 Pentcheva R, Huijben M, Otte K, Pickett W E, Kleibeuker J E, Huijben J, Boschker H, Kockmann D, Siemons W, Koster G, Zandvliet H J W, Rijnders G, Blank D H A, Hilgenkamp H and Brinkman A.2010 Phys. Rev. Lett. 104 166804
19 Sakudo T and Unoki H 1971 Phys. Rev. Lett. 26 851
20 Zhang H R, Zhang Y, Zhang H, Zhang J, Shen X, Guan X X, Chen Y Z, Yu R C, Pryds N, Chen Y S, Shen B G and Sun J R 2017 Phys. Rev. B 96 195167
21 Bell C, Harashima S, Kozuka Y, Kim M, Kim B G, Hikita Y and Hwang H Y 2009 Phys. Rev. Lett. 103 226802
22 Stornaiuolo D, Cantoni C, De Luca G M, Di Capua R, Di Gennaro E, Ghiringhelli G, Jouault B, Marr\`e D, Massarotti D, Granozio F M, Pallecchi I, Piamonteze C, Rusponi S, Tafuri F and Salluzzo M 2016 Nat. Mater. 15 278
23 Cao Y W, Yang Z Z, Kareev M, Liu X R, Meyers D, Middey S, Choudhury D, Shafer P, Guo J D, Freeland J W, Arenholz E, Gu L and Chakhalian J 2016 Phys. Rev. Lett. 116 076802
[1] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[2] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[3] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[4] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[5] Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640×512 focal plane array
Hong-Yue Hao(郝宏玥), Wei Xiang(向伟), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Xi Han(韩玺), Yao-Yao Sun(孙瑶耀), Dong-Wei Jiang(蒋洞微), Yu Zhang(张宇), Yong-Ping Liao(廖永平), Si-Hang Wei(魏思航), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(4): 047303.
[6] High-efficiency InGaN/AlInGaN multiple quantum wells with lattice-matched AlInGaN superlattices barrier
Feng Xu(徐峰), Peng Chen(陈鹏), Fu-Long Jiang(蒋府龙), Ya-Yun Liu(刘亚云), Zi-Li Xie(谢自立), Xiang-Qian Xiu(修向前), Xue-Mei Hua(华雪梅), Yi Shi(施毅), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2017, 26(1): 017803.
[7] Effect of disorders on topological phases inone-dimensional optical superlattices
Zhizhou Wang(王志宙), Yidong Wu(吴一东), Huijing Du(杜会静), Xili Jing(井西利). Chin. Phys. B, 2016, 25(7): 077303.
[8] Observation of trapped light induced by Dwarf Dirac-cone in out-of-plane condition for photonic crystals
Subir Majumder, Tushar Biswas, Shaymal K Bhadra. Chin. Phys. B, 2016, 25(10): 107102.
[9] Modified method of surface plasmons in metal superlattices
Zhang Yu-Liang, Wang Xuan-Zhang. Chin. Phys. B, 2015, 24(5): 057301.
[10] Defect solitons supported by parity-time symmetric defect in superlattices
Hu Su-Mei, Hu Wei. Chin. Phys. B, 2013, 22(7): 074201.
[11] Performance improvement of blue light-emitting diodes with an AlInN/GaN superlattice electron-blocking layer
Zhao Fang, Yao Guang-Rui, Song Jing-Jing, Ding Bin-Bin, Xiong Jian-Yong, Su Chen, Zheng Shu-Wen, Zhang Tao, Fan Guang-Han. Chin. Phys. B, 2013, 22(5): 058503.
[12] Exchange couplings in magnetic films
Liu Wei, Liu Xiong-Hua, Cui Wei-Bin, Gong Wen-Jie, Zhang Zhi-Dong. Chin. Phys. B, 2013, 22(2): 027104.
[13] Dependence of electron dynamics on magnetic fields in semiconductor superlattices
Yang Gui, Wang Lei, Tian Jun-Long. Chin. Phys. B, 2013, 22(12): 127305.
[14] The influence of AlGaN/GaN superlattices as electron blocking layers on the performance of blue InGaN light-emitting diodes
Gong Chang-Chun, Fan Guang-Han, Zhang Yun-Yan, Xu Yi-Qin, Liu Xiao-Ping, Zheng Shu-Wen, Yao Guang-Rui, Zhou De-Tao. Chin. Phys. B, 2012, 21(6): 068505.
[15] Spin-polarized transport in graphene nanoribbon superlattices
Yu Xin-Xin, Xie Yue-E, Yang Tao, Chen Yuan-Ping. Chin. Phys. B, 2012, 21(10): 107202.
No Suggested Reading articles found!