Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018201    DOI: 10.1088/1674-1056/abc54b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain

Chao Yang(杨超)1,2, Jing Wang(王静)1,2, Junsheng Wang(王俊升)1,2, Yu Liu(刘瑜)3, Guomin Han(韩国民)4, Haifeng Song(宋海峰)3,4, and Houbing Huang(黄厚兵)1,2,
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; 2 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; 3 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 4 Software Center for High Performance Numerical Simulation, China Academy of Engineering Physics, Beijing 100088, China
Abstract  A multi-phase-field model is implemented to investigate the peritectic solidification of Fe-C alloy. The nucleation mode of austenite is based on the local driving force, and two different thicknesses of the primary austenite on the surface of the ferrite equiaxed crystal grain are used as the initial conditions. The simulation shows the multiple interactions of ferrite, austenite, and liquid phases, and the effects of carbon diffusion, which presents the non-equilibrium dynamic process during Fe-C peritectic solidification at the mesoscopic scale. This work not only reveals the influence of the austenite nucleation position, but also clarifies the formation mechanism of liquid phase channels and molten pools. Therefore, the present study contributes to the understanding of the micro-morphology and micro-segregation evolution mechanisms of Fe-C alloy during peritectic solidification.
Keywords:  multi-phase-field simulation      morphology evolution      peritectic solidification      carbon diffusion      Fe-C alloy  
Revised:  16 October 2020      Published:  30 December 2020
PACS:  82.20.Wt (Computational modeling; simulation)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.30.Fb (Solidification)  
  81.05.Bx (Metals, semimetals, and alloys)  
Fund: Project supported by the Science Challenge Project, China (Grant No. TZZT2019-D1-03), the National Natural Science Foundation of China (Grant No. 51972028), and the National Key Research and Development Program of China (Grant No. 2019YFA0307900).
Corresponding Authors:  Corresponding author. E-mail: hbhuang@bit.edu.cn   

Cite this article: 

Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵) Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain 2021 Chin. Phys. B 30 018201

1 Phelan D, Reid M and Dippenaar R 2006 Metall. Mater. Trans. A 37 985
2 Komizo Y I Trans. JWRI 40 7
3 Luo S, Liu G G, Wang P, Wang X H, Wang W L,Zhu M Y 2020 Metall. Mater. Trans. A 51 767
4 Nestler B and Wheeler A A 2000 Physica D 138 114
5 Böttger B, Eiken J and Apel M 2015 Comput. Mater. Sci. 108 283
6 Ode M, Suzuki T, Kim S G and Kim W T 2000 Sci. Technol. Adv. Mater. 1 43
7 Sun Y and Beckermann C 2007 J. Comput. Phys. 220 626
8 Kim S G, KimW T and Suzuki T 1999 Phys. Rev. E 60 7186
9 Yang C, Wang X T, Wang J S and Huang H B 2020 Comput. Mater. Sci. 172 109322
10 Pan S Y and Zhu M F 2018 Acta Mater. 146 63
11 Eiken J, Böttger B and Steinbach I 2006 Phys. Rev. E 73 066122
12 Alves C L M, Rezende J, Senk D and Kundin J 2019 J. Mater. Res. Technol. 8 233
13 Yasuda H, Morishita K, Nakatsuka N, Nishimura T, Yoshiya M, Sugiyama A, Uesugi K and Takeuchi A 2019 Nat. Commun. 10 1
14 Yang C, Li S L, Wang X T, Wang J S and Huang H B 2020 Comput. Mater. Sci. 171 109220
15 Yang C, Wang X T, Jafri H M, Wang J S and Huang H B 2020 Comput. Mater. Sci. 178 109626
16 Fan Y M, Fang H, Tang Q Y, Zhang Q Y, Pan S Y and Zhu M F 2020 Eur. Phys. J. E 43 1
17 Liu H, Cheng A J, Wang H and Zhao J 2018 Comput. Math. Appl. 76 1876
18 Sekerka R F 2004 J. Cryst. Growth 264 530
19 Röger M and Tonegawa Y 2008 Calc. Var. Partial Differ. Equ. 32 111
20 Jin H Q, Jespersen D, Mehrotra P, Biswas R, Huang L and Chapman B 2011 Parallel Comput. 37 562
21 Pan S Y, Zhu M F and Rettenmayr M 2017 Acta Mater. 132 565
22 Chipman J 1972 Metall. Mater. Trans. B 3 55
23 Wang S J, Luo L S, Su Y Q, Guo J J and Fu H Z 2013 J. Mater. Res. 28 3261
[1] Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations
Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永东), Sui-Shuan Zhang(张虽栓), and Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2021, 30(1): 017101.
[2] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[3] Find slow dynamic modes via analyzing molecular dynamics simulation trajectories
Chuanbiao Zhang(张传彪) and Xin Zhou(周昕)†. Chin. Phys. B, 2020, 29(10): 108706.
[4] Distribution of a polymer chain between two interconnected spherical cavities
Chao Wang(王超)†, Ying-Cai Chen(陈英才), Shuang Zhang(张爽), Hang-Kai Qi(齐航凯), and Meng-Bo Luo(罗孟波)‡. Chin. Phys. B, 2020, 29(10): 108201.
[5] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[6] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[7] Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2020, 29(3): 036101.
[8] The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells
Jianhui Bao(包建辉), Ke Tao(陶科), Yiren Lin(林苡任), Rui Jia(贾锐), Aimin Liu(刘爱民). Chin. Phys. B, 2019, 28(9): 098201.
[9] A computational study of the chemokine receptor CXCR1 bound with interleukin-8
Yang Wang(王洋), Cecylia Severin Lupala, Ting Wang(王亭), Xuanxuan Li(李选选), Ji-Hye Yun, Jae-hyun Park, Zeyu Jin(金泽宇), Weontae Lee, Leihan Tan(汤雷翰), Haiguang Liu(刘海广). Chin. Phys. B, 2018, 27(3): 038702.
[10] Capillary filling in closed-end nanotubes
Chen Zhao(赵晨), Jiajia Zhou(周嘉嘉), Masao Doi. Chin. Phys. B, 2018, 27(2): 024701.
[11] Effect of elastic strain energy on grain growth and texture in AZ31 magnesium alloy by phase-field simulation
Ri He(何日), Ming-Tao Wang(王明涛), Jian-Feng Jin(金剑锋), Ya-Ping Zong(宗亚平). Chin. Phys. B, 2017, 26(12): 128201.
[12] Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations
Shuai Jiang(姜帅), Rui Jia(贾锐), Ke Tao(陶科), Caixia Hou(侯彩霞), Hengchao Sun(孙恒超), Zhiyong Yu(于志泳), Yongtao Li(李勇滔). Chin. Phys. B, 2017, 26(8): 087802.
[13] Diffusion in the aged aluminium film on iron
A Y Galashev, O R Rakhmanova, V A Kovrov, Yu P Zaikov. Chin. Phys. B, 2017, 26(3): 038201.
[14] Electronic structure of O-doped SiGe calculated by DFT+U method
Zong-Yan Zhao(赵宗彦), Wen Yang(杨雯), Pei-Zhi Yang(杨培志). Chin. Phys. B, 2016, 25(12): 127101.
[15] Electronic structures of efficient MBiO3 (M = Li, Na, K, Ag) photocatalyst
Wen-Liu Zhou(周文流), Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2016, 25(3): 037102.
No Suggested Reading articles found!