Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 013302    DOI: 10.1088/1674-1056/abc53d
INVITED REVIEW Prev   Next  

57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets

Lizhong Zhao(赵利忠)1,2,†, Xuefeng Zhang(张雪峰)1,‡, Mi Yan(严密)1, 2, Zhongwu Liu(刘仲武)3, and Jean-Marc Greneche4
1 Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; 2 State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China; 3 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; 4 Institut des Molécules et Matériaux du Mans CNRS UMR-6283, Le Mans Université, Le Mans F- 72085, France
Abstract  This review summarizes the recent advances on the application of 57Fe Mössbauer spectrometry to study the magnetic and phase characteristics of Nd-Fe-B-based permanent magnets. First of all, the hyperfine structures of the Ce2Fe14B, (Ce, Nd)2Fe14B and MM2Fe14B phases are well-defined by using the model based on the Wigner-Seitz analysis of the crystal structure. The results show that the isomer shift δ and the quadrupole splitting ∆ E Q of those 2:14:1 phases show minor changes with the Nd content, while the hyperfine field B hf increases monotonically with increasing Nd content and its value is influenced by the element segregation and phase separation in the 2:14:1 phase. Then, the hyperfine structures of the low fraction secondary phases are determined by the 57Fe Mössbauer spectrometry due to its high sensitivity. On this basis, the content, magnetic behavior, and magnetization of the REFe2 phase, the amorphous grain boundary (GB) phase, and the amorphous worm-like phase, as well as their effects on the magnetic properties, are systematically studied.
Keywords:  57Fe Mössbauer spectrometry      Nd-Fe-B-based permanent magnets      (Ce      Nd)2Fe14B phase      grain boundary phase  
Received:  28 May 2020      Revised:  22 October 2020      Accepted manuscript online:  28 October 2020
PACS:  33.45.+x (M?ssbauer spectra)  
Fund: Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY20E010002, LR18E010001, and LD19E010001), the National Natural Science Foundation of China (Grant Nos. U1704253 and 51801047), Liaoning Revitalization Talents Program (Grant No. XLYC1807177), the Key Research and Development plan of Zhejiang Province, China (Grant No. 2020C05014), and Ten Thousand Talents Plan of Zhejiang Province, China (Grant No. 2018R52003).
Corresponding Authors:  Corresponding author. E-mail: lzzhao@hdu.edu.cn Corresponding author. E-mail: zhang@hdu.edu.cn   

Cite this article: 

Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets 2021 Chin. Phys. B 30 013302

1 Gren\`eche J M, Miglierini M and Slawska-Waniewska A 2000 Hyp. Int. 126 27
2 Greneche J M 2003 Hyp. Int. 148-149 79
3 Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
4 Gutfleisch O, Willard M A, Brück E,, Chen C H, Sankar S and Liu J P 2011 Adv. Mater. 23 821
5 Rosenberg M, Deppe P, Erdmann K, Sostarich M and Stadelmaier H 1986 J. Magn. Magn. Mater. 54-57 599
6 Rosenberg M, Deppe P and Stadelmaier H 1986 Hyp. Int. 28 503
7 Fruchart R, L'Heritier P, De Reotier P D, Fruchart D, Wolfers P, Coey J, Ferreira L, Guillen R, Vulliet P and Yaouanc A 1987 J. Phys. F: Metal Phys. 17 483
8 Long G J and Grandjean F 1991 Supermagnets, Hard Magnetic Materials (Springer) pp. 355-389
9 Gubbens P C M, Kraan A M V D and Buschow K H J 1990 Hyp. Int. 53 37
10 Boge M, Czjzek G, Givord, D, Jeandey C, Li H S and Oddou J L 1986 J. Phys. F: Metal Phys. 16 L67
11 Bogé M, Coey J M D, Czjzek G, Givord D, Jeandey C, Li H S and Oddou J L 1985 Sol. State Comm. 55 295
12 Meyer C, Gavigan J P, Czjzek G and Bornemann J 1989 Sol. State Comm. 69 83
13 Zhang Y J, Ma T Y, Jin J Y, Li J T, Wu C, Shen B G and Yan M 2017 Acta Mater. 128 22
14 Pathak A K, Khan M, Gschneidner K A, Jr. McCallum R W, Zhou L, Sun K, Dennis K W, Zhou C, Pinkerton F E, Kramer M J and Pecharsky V K 2015 Adv. Mater. 27 2663
15 Zhao L, Li C, Hao Z, Liu X, Liao X, Zhang J, Su K, Li L, Yu H, Greneche J M, Jin J and Liu Z 2019 Mater. Charac. 148 208
16 Zhang J S, Zhao L Z, Liao X F, Zeng H X, Peng D R, Yu H Y, Zhong X C and Liu Z W 2019 Intermetallics 107 75
17 Herbst J F, Meyer M S and Pinkerton F E 2012 J. Appl. Phys. 111 07A718
18 Li Z B, Zhang M, Shen B G, Hu F X and Sun J R 2016 Mater. Lett. 172 102
19 Hono K and Sepehri-Amin H 2012 Scri. Mater. 67 530
20 Sepehri-Amin H, Ohkubo T, Shima T and Hono K 2012 Acta Mater. 60 819
21 Sepehri-Amin H, Ohkubo T and Hono K 2013 Acta Mater. 61 1982
22 Murakami Y, Tanigaki T, Sasaki T T, Takeno Y, Park H S, Matsuda T, Ohkubo T, Hono K and Shindo D 2014 Acta Mater. 71 370
23 Zhao L Z, Zhou Q, Zhang J S, Jiao D L, Liu Z W and Greneche J M 2017 Mater. Des. 117 326
24 Zhao L, Yu H, Guo W, Zhang J, Zhang Z, Hussain M, Liu Z and Greneche J M 2017 IEEE Trans. Magn. 53 1
25 Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M and Yamauchi H 1985 Jpn. J. Appl. Phys. 24 L803
26 Zhao L Z, Guo W T, Zhang Z Y, Jiao D L, Zhang J S, Liu Z W and Greneche J M 2017 J. Alloys Compd. 715 60
27 Wang J, Liang L, Zhang L T, Yano M, Terashima K, Kada H, Kato S, Kadono T, Imada S, Nakamura T and Hirano S 2016 Intermetallics 69 42
28 Long G J, Kulasekere R, Pringle O A, Grandjean F and Buschow K H J 1992 J. Magn. Magn. Mater. 117 239
29 Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M and Yamauchi H 1986 J. Appl Phys. 59 873
30 Zhao L Z, Yu H Y, Guo W T, Zhang J S, Zhang Z Y, Hussain M, Liu Z W and Greneche J M 2017 IEEE Tran. Magn. 53 1800205
31 Pei K, Zhang X, Lin M and Yan A R 2016 J. Magn. Magn. Mater. 398 96
32 Hussain M, Zhao L Z, Zhang C, Jiao D L, Zhong X C and Liu Z W 2016 Physica B 483 69
33 Jin J, Yan M, Liu Y, Peng B and Bai G 2019 Acta Mater. 169 248
34 Lai R, Chen R, Yin W, Tang X, Wang Z, Jin C, Lee D and Yan A 2017 J. Alloys Compd. 724 275
35 Jiang Q and Zhong Z 2017 J. Mater. Sci. Tech. 33 1087
36 Zuo W L, Zuo S L, Li R, Zhao T Y, Hu F X, Sun J R, Zhang X F, Liu J P and Shen B G 2017 J. Alloys Compd. 695 1786
37 Liu W, Zhang Z, Yue M, Li Z, Zhang D and Zhang H 2018 J. Magn. Magn. Mater. 464 61
38 Zhang Y, Ma T, Yan M, Jin J, Wu B, Peng B, Liu Y, Yue M and Liu C 2018 Acta Mater. 146 97
39 Meyer C, Hartmann-Boutron F, Gros Y, Berthier Y and Buevoz J 1981 J. de Phys. 42 605
40 Peng B X, Ma T Y, Zhang Y J, Jin J Y and Yan M 2017 Scr. Mater. 131 11
41 Paolasini L, Dervenagas P, Vulliet P, Sanchez J P, Lander G, Hiess A, Panchula A and Canfield P 1998 Phys. Rev. B 58 12117
42 Li Z B, Zhang M, Shen B G, Hu F X and Sun J R 2016 Mater. Let. 172 102
43 Wang R Q, Liu Y, Li J, Zhao W and Yang X J 2017 J Mater. Sci. 52 7311
44 Jin J, Zhang Z, Zhao L, Peng B, Liu Y, Greneche J M and Yan M 2019 Scr. Mater. 170 150
45 Zhao L Z, Zhang J S, Ahmed G, Liao X F, Liu Z W and Greneche J M 2018 Sci. Rep. 8 6826
46 Murakami Y, Tanigaki T, Sasaki T T, Takeno Y, Park H S, Matsuda T, Ohkubo T, Hono K and Shindo D 2014 Acta Mater. 71 370
47 Woodcock T G, Ramasse Q M, Hrkac G, Shoji T, Yano M, Kato A and Gutfleisch O 2014 Acta Mater. 77 111
48 Deng X X, Zhao L Z, Yu H Y, Liu Z W and Xiao Z Y 2015 IEEE Trans. Magn. 51 1
49 Zhao L Z, Deng X X, Yu H Y, Guan H J, Li X Q, Xiao Z Y, Liu Z W and Greneche J M 2017 J. Magn. Magn. Mater. 443 51
50 Zhao L and Greneche J M 2020 J. Phys. D: Appl. Phys. 53 095002
51 Zhao L Z, Hong Y, Jiao D L, Qiu Z G, Zhou Q, Hussain M, Liu Z W, Greneche J M and Zhang G Q 2016 J. Phys. D: Appl. Phys. 49 185005
[1] Femtosecond laser user facility for application research on ultrafast science
Zhaohua Wang(王兆华), Shaobo Fang(方少波), Hao Teng(滕浩), Hainian Han(韩海年), Xinkui He(贺新奎), Zhiyi Wei(魏志义). Chin. Phys. B, 2018, 27(7): 074204.
[2] Lipoprotein in cholesterol transport: Highlights and recent insights into its structural basis and functional mechanism
Shu-Yu Chen(陈淑玉), Na Li(李娜), Tao-Li Jin(金桃丽), Lu Gou(缑璐), Dong-Xiao Hao(郝东晓), Zhi-Qi Tian(田芷淇), Sheng-Li Zhang(张胜利), Lei Zhang(张磊). Chin. Phys. B, 2018, 27(2): 028702.
[3] Absolute density measurement of nitrogen dioxide with cavity-enhanced laser-induced fluorescence
Zheng-Hai Yang(杨正海), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2018, 27(10): 100601.
[4] Quantum critical behavior in an antiferromagnetic heavy-fermion Kondo lattice system (Ce1-xLax)2Ir3Ge5
Rajwali Khan, Qianhui Mao(毛乾辉), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Jianhua Du(杜建华), Binjie Xu(许彬杰), Yuxing Zhou(周宇星), Yannan Zhang(张燕楠), Bing Chen(陈斌), Minghu Fang(方明虎). Chin. Phys. B, 2017, 26(1): 017401.
[5] A three-dimensional Eulerian method for the numerical simulation of high-velocity impact problems
Wu Shi-Yu, Liu Kai-Xin, Chen Qian-Yi. Chin. Phys. B, 2014, 23(3): 034601.
No Suggested Reading articles found!