Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024209    DOI: 10.1088/1674-1056/abc3b7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation

Zhongyang Li(李忠洋)1,†, Jia Zhao(赵佳)1, Wenkai Liu(刘文锴)2, Qingfeng Hu(胡青峰)2, Yongjun Li(李永军)1, Binzhe Jiao(焦彬哲)1, Pibin Bing(邴丕彬)1, Hongtao Zhang(张红涛)1, Lian Tan(谭联)1, and Jianquan Yao(姚建铨)3
1 College of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; 2 College of Surveying and Geo-informatics, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; 3 College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072, China
Abstract  A novel scheme for high-efficiency terahertz (THz) wave generation based on optimized cascaded difference frequency generation (OCDFG) with planar waveguide is presented. The phase mismatches of each-order cascaded difference frequency generation (CDFG) are modulated by changing the thickness of the waveguide, resulting in a decrement of phase mismatches in cascaded Stokes processes and an increment of phase mismatches in cascaded anti-Stokes processes simultaneously. The modulated phase mismatches enhance the cascaded Stokes processes and suppress the cascaded anti-Stokes processes simultaneously, yielding energy conversion efficiencies over 25% from optical wave to THz wave at 100 K.
Keywords:  terahertz wave generation      optimized cascaded difference frequency generation      planar waveguide  
Published:  18 January 2021
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.65.Dr (Stimulated Raman scattering; CARS)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61735010, 31671580, and 61601183), Natural Science Foundation of Henan Province, China (Grant No. 162300410190), and Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT023).
Corresponding Authors:  Corresponding author. E-mail: thzwave@163.com   

Cite this article: 

Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨) Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation 2021 Chin. Phys. B 30 024209

1 Tonouchi M 2007 Nat. Photon. 1 97
2 Jepsen P U, Cooke D G and Koch M 2011 Laser Photonics Rev. 5 124
3 Zhang X C, Shkurinov A and Zhang Y 2017 Nat. Photon. 11 16
4 Murate K and Kawase K 2018 J. Appl. Phys. 124 160901
5 Yoshida S, Hirori H, Tachizaki T, Yoshioka K, Arashida Y, Wang Z-H, Sanari Y, Takeuchi O, Kanemitsu Y and Shigekawa H 2019 ACS Photon. 6 1356
6 Liu P, Xu D, Yu H, Zhang H, Li Z, Zhong K, Wang Y and Yao J Q 2013 J. Lightw. Technol. 31 2508
7 Ravi K, Schimpf D N and K\"artner F X 2016 Opt. Express 24 25582
8 Saito K, Tanabe T and Oyama Y 2015 J. Opt. Soc. Am. B 32 617
9 Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L and Bing P B 2011 Chin. Phys. B 20 054207
10 Li Z Y, Sun X Q, Li Y J, Yuan B, Zhang H T, Bing P B, Wang Z and Yao J Q 2020 Opt. Lasers Eng. 128 106035
11 Saito K, Tanabe T and Oyama Y 2012 Opt. Express 20 26082
12 P\'alfalvi L, Hebling J, Kuhl J, Péter\'a and Polg\'ar K 2005 J. Appl. Phys. 97 123505
13 Jundt D H 1997 Opt. Lett. 22 1553
14 Carbajo S2015 Stanford Linear Accelerator Center(Personal Communication)
15 Ravi K, Hemmer M, Cirmi G, Reichert F, Schimpf D N, M\"ucke O D and K?rtner F X 2016 Opt. Lett. 41 3806
16 Zhao P, Ragam S, Ding Y J and Zotova I B 2012 Conference on Lasers & Electro-optics, IEEE, San Jose, California United States p. QF3G.2
17 Zhong K, Yao J, Xu D, Wang Z, Li Z, Zhang H and Wang P 2010 Opt. Commun. 283 3520
[1] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[2] Giant Goos-Hänchen shifts of waveguide coupled long-range surface plasmon resonance mode
Qi You(游琪), Jia-Qi Zhu(祝家齐), Jun Guo(郭珺), Lei-Ming Wu(吴雷明), Xiao-Yu Dai(戴小玉), Yuan-Jiang Xiang(项元江). Chin. Phys. B, 2018, 27(8): 087302.
[3] Factorization method for inverse obstacle scattering problem in three-dimensional planar acoustic waveguides
Xue Qin(秦雪). Chin. Phys. B, 2018, 27(10): 100203.
[4] Fabrication of Al air-bridge on coplanar waveguide
Zhen-Chuan Jin(金震川), Hai-Teng Wu(吴海腾), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(10): 100310.
[5] High quality factor superconducting coplanar waveguide fabricated with TiN
Qiang Liu(刘强), Guang-Ming Xue(薛光明), Xin-Sheng Tan(谭新生), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(5): 058402.
[6] Superconducting tunable filter with constant bandwidth using coplanar waveguide resonators
Ying Jiang(蒋莹), Bo Li(李博), Bin Wei(魏斌), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松), Li-Nan Jiang(姜立楠). Chin. Phys. B, 2017, 26(10): 108501.
[7] Tunable coplanar waveguide resonator with nanowires
Zhou Yu, Jia Tao, Zhai Ji-Quan, Wang Cheng, Zhong Xian-Qian, Cao Zhi-Min, Sun Guo-Zhu, Kang Lin, Wu Pei-Heng. Chin. Phys. B, 2015, 24(4): 047403.
[8] The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity
Liu Bing-Can, Yu Li, Lu Zhi-Xin. Chin. Phys. B, 2011, 20(3): 037302.
[9] An analytical model for coplanar waveguide on silicon-on-insulator substrate with conformal mapping technique
He Da-Wei, Cheng Xin-Hong, Wang Zhong-Jian, Xu Da-Wei, Song Zhao-Rui, Yu Yue-Hui. Chin. Phys. B, 2011, 20(1): 010210.
[10] Study of refractive index and thickness of TiO2/ormosil planar waveguide
Wang Bao-Ling, Hu Li-Li. Chin. Phys. B, 2004, 13(11): 1887-1891.
No Suggested Reading articles found!