Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024208    DOI: 10.1088/1674-1056/abc3b5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband absorption enhancement with ultrathin MoS2 film in the visible regime

Jun Wu(吴俊)1,2,
1 College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China; 2 Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
Abstract  The broadband absorption enhancement effect in ultrathin molybdenum disulfide (MoS2) films is investigated. It is achieved by inserting the MoS2 film between a dielectric film and a one-dimensional silver grating backed with a silver mirror. The broadband absorption enhancement in the visible region is achieved, which exhibits large integrated absorption and short-circuit current density for solar energy under normal incidence. The optical properties of the proposed absorber are found to be superior to those of a reference planar structure, which makes the proposed structure advantageous for practical photovoltaic application. Moreover, the integrated absorption and short-circuit current density can be maintained high for a wide range of incident angles. A qualitative understanding of such broadband absorption enhancement effect is examined by illustrating the electromagnetic field distribution at some selected wavelengths. The results pave the way for developing high-performance optoelectronic devices, such as solar cells, photodetectors, and modulators.
Keywords:  two-dimensional (2D) materials      transition-metal dichalcogenide      plasmonics      absorption enhancement  
Received:  13 August 2020      Revised:  21 September 2020      Accepted manuscript online:  22 October 2020
PACS:  42.79.Dj (Gratings)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  25.70.Ef (Resonances)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61405217), the Zhejiang Provincial Natural Science Foundation, China (Grant No. LY20F050001), the Anhui Polytechnic University Research Startup Foundation, China (Grant No. 2020YQQ042), and the Pre-research Project of Natural Science Foundation of Anhui Polytechnic University, China (Grant No. Xjky2020021).
Corresponding Authors:  Corresponding author. E-mail: mailswj2011@163.com   

Cite this article: 

Jun Wu(吴俊) Broadband absorption enhancement with ultrathin MoS2 film in the visible regime 2021 Chin. Phys. B 30 024208

1 Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photonics 4 611
2 Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photonics 6 749
3 Bao Q and Loh K P 2012 ACS Nano 6 3677
4 Xia F N, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photonics 8 899
5 Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
6 Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
7 Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
8 Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
9 Yu Y L, Yu Y F, Cai Y, Li W, Gurarslan A, Peelaers H, Aspens D E, Van de Walle C G, Nguyen N V, Zhang Y and Cao L 2015 Sci. Rep. 5 16996
10 Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Castro Neto H A and Novoselov K S 2013 Science 340 1311
11 Yu Y, Yu Y, Xu C, Cai Y Q, Su L, Zhang Y, Zhang Y W, Gundogdu K and Cao L 2016 Adv. Funct. Mater. 26 4733
12 Cao L 2015 MRS Bull. 40 592
13 Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
14 Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W and Zhang Y 2015 Nano Lett. 15 486
15 Piper J and Fan S 2016 ACS Photonics 3 571
16 Bahauddin S, Robatjazi H and Thomann I 2016 ACS Photonics 3 853
17 Huang L, Li G, Gurarslan A, Yu Y, Kirste R, Guo W, Zhao J, Collazo R, Sitar Z, Parsons G N, Kudenov M and Cao L 2016 ACS Nano 10 7493
18 Jariwala D, Davoyan A R, Tagliabue G, Sherrott M C, Wong J and Atwater H A 2016 Nano Lett. 16 5482
19 Long L, Yang Y, Ye H and Wang L2017 Journal of Quantitative Spectroscopy and Radiative Transfer 200
20 Butun S, Palacios E, Cain J D, Liu Z, Dravid V P and Aydin K 2017 ACS Appl. Mater. Interfaces 9 15044
21 Zhang Y, Liu W, Li Z, Cheng H, Zhang Y, Jia G, Chen S and Tian J 2017 Appl. Phys. Lett. 111 111109
22 Wong J, Jariwala D, Tagliabue G, Tat K, Davoyan A R, Sherrott M C and Atwater H A 2017 ACS Nano 11 7230
23 Kim E, Cho J W, Kim B R, Nguyen T T T, Nam Y H, Kim S K, Yoon S, Kim Y S, Lee J H and Kim D W 2018 Adv. Mater. Interfaces 5 1701637
24 Wang X Y, Wang J C, Hu Z D, Sang T and Feng Y 2018 Appl. Phys. Express 11 062601
25 Qi H L, Sang T, Yin X, Wang X and Li G Q 2020 Appl. Phys. Express 13 065001
26 Moharam M G, Grann E B, Pommet D A and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068
27 Lalanne P and Morris G M 1996 J. Opt. Soc. Am. A 13 779
28 Goffe W, Ferrier G and Rodgers J 1994 J. Econometrics 60 65
29 Shiozaki M and Shigehara M2005 SEI Technol. Rev. 59 27
30 Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
31 Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J and Heinz T F 2014 Phys. Rev. B 90 205422
32 Wu J 2018 Sol. Energy 165 85
33 Min C, Li J, Veronis G, Lee J Y, Fan S and Peumans P 2010 Appl. Phys. Lett. 96 133302
34 Hao J, Zhou L and Qiu M 2011 Phys. Rev. B 83 165107
35 Massiot I, Vandamme N, Bardou N, Dupuis C, Lema\ítre A, Guillemoles J F and Collin S 2014 ACS Photonics 1 878
36 Massa E, Giannini V, Hylton N P, Ekins-Daukes N J, Jain S, Daif O E and Maier S A 2014 ACS Photonics 1 871
[1] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[2] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[3] Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2
Xiao-Fang Tang(唐筱芳), Shuang-Xing Zhu(朱双兴), Hao Liu(刘豪), Chen Zhang(章晨), Qi-Yi Wu(吴旗仪), Zi-Teng Liu(刘子腾), Jiao-Jiao Song(宋姣姣), Xiao Guo(郭晓), Yong-Song Wang(王永松), He Ma(马赫), Yin-Zou Zhao(赵尹陬), Fan-Ying Wu(邬钒颖), Shu-Yu Liu(刘姝妤), Kai-Hui Liu(刘开辉), Ya-Hua Yuan(袁亚华), Han Huang(黄寒), Jun He(何军), Wen Xu(徐文), Hai-Yun Liu(刘海云), Yu-Xia Duan(段玉霞), and Jian-Qiao Meng(孟建桥). Chin. Phys. B, 2022, 31(3): 037103.
[4] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[5] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[6] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[7] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[8] High quality PdTe2 thin films grown by molecular beam epitaxy
En Li(李恩), Rui-Zi Zhang(张瑞梓), Hang Li(李航), Chen Liu(刘晨), Geng Li(李更), Jia-Ou Wang(王嘉鸥), Tian Qian(钱天), Hong Ding(丁洪), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱), Xiao Lin(林晓), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(8): 086804.
[9] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[10] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[11] Electronic, optical property and carrier mobility of graphene, black phosphorus, and molybdenum disulfide based on the first principles
Congcong Wang(王聪聪), Xuesheng Liu(刘学胜), Zhiyong Wang(王智勇), Ming Zhao(赵明), Huan He(何欢), Jiyue Zou(邹吉跃). Chin. Phys. B, 2018, 27(11): 118106.
[12] Silicon nanophotonics for on-chip light manipulation
Jingshu Guo(郭敬书), Daoxin Dai(戴道锌). Chin. Phys. B, 2018, 27(10): 104208.
[13] Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime
Jian Shao(邵健), Jie Li(李杰), Ying-Hua Wang(王英华), Jia-Qi Li(李家奇), Zheng-Gao Dong(董正高), Lin Zhou(周林). Chin. Phys. B, 2016, 25(5): 058103.
[14] Carrier-envelope phase measurement using plasmonic-field-enhanced high-order harmonic generation of H atom in few-cycle laser pulses
Wei Li(李伟), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信). Chin. Phys. B, 2016, 25(5): 053203.
[15] Fano resonance and magneto-optical Kerr rotaion in periodic Co/Ni complex plasmonic nanostructure
Le-Yi Chen(陈乐易), Zhi-Xiong Tang(唐志雄), Jin-Long Gao(高锦龙), Dao-Yong Li(李道勇), Cheng-Xin Lei(类成新), Zhen-Zhi Cheng(程振之), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2016, 25(11): 113301.
No Suggested Reading articles found!