Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017901    DOI: 10.1088/1674-1056/abc2be

Analysis of secondary electron emission using the fractal method

Chun-Jiang Bai(白春江)1, Tian-Cun Hu(胡天存)1, Yun He(何鋆)1, Guang-Hui Miao(苗光辉)1, Rui Wang(王瑞)1, Na Zhang(张娜)1, and Wan-Zhao Cui(崔万照)1,
National Key Laboratory of Science and Technology on Space Science, China Academy of Space Technology (Xi'an), Xi'an 710100, China
Abstract  Based on the rough surface topography with fractal parameters and the Monte-Carlo simulation method for secondary electron emission properties, we analyze the secondary electron yield (SEY) of a metal with rough surface topography. The results show that when the characteristic length scale of the surface, G, is larger than 1× 10-7, the surface roughness increases with the increasing fractal dimension D. When the surface roughness becomes larger, it is difficult for entered electrons to escape surface. As a result, more electrons are collected and then SEY decreases. When G is less than 1× 10-7, the effect of the surface topography can be ignored, and the SEY almost has no change as the dimension D increases. Then, the multipactor thresholds of a C-band rectangular impedance transfer and an ultrahigh-frequency-band coaxial impedance transfer are predicted by the relationship between the SEY and the fractal parameters. It is verified that for practical microwave devices, the larger the parameter G is, the higher the multipactor threshold is. Also, the larger the value of D, the higher the multipactor threshold.
Keywords:  secondary electron emission yield      the fractal method      multipactor  
Received:  22 July 2020      Revised:  04 September 2020      Accepted manuscript online:  20 October 2020
PACS:  79.20.Hx (Electron impact: secondary emission)  
  05.45.Df (Fractals)  
  52.80.Pi (High-frequency and RF discharges)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1537211 and 61901361).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照) Analysis of secondary electron emission using the fractal method 2021 Chin. Phys. B 30 017901

1 Vaughan J R M 1988 IEEE Trans. Microw. Theor. Tech. 35 1172
2 Nagesh S K, Revannasiddiah D and Shastry S V K 2005 Pramana 64 95
3 Sazontov A, Semenov V, Buyanova M, Vdovicheva N, Anderson D, Lisak M, Puech J and Lapierre L 2005 Phys. Plasmas 12 093501
4 Nistor V, Gonzalez L A, Aguilera L, Montero I, Galan L, Wochner U and Raboso D 2014 Appl. Surf. Sci. 315 445
5 Vague J, Melgarejo J C, Guglielmi M, Boria V E, Anza S, Vicente C, Moreno M R, Taroncher M, Martinez B G and Raboso D 2018 IEEE Trans. Microw. Theor. Tech. 66 3644
6 Feng G B, Cui W Z, Zhang N, Cao M and Liu C L 2017 Chin. Phys. B 26 097901
7 Dionne G F 1975 J. Appl. Phys. 46 3347
8 Wang Y N, Li S X, Liu Y and Wang L 2019 Chin. Phys. B 28 025202
9 Septier A and Belgaroui M 1985 IEEE Trans. Electr. Insul. 20 725
10 Kawata J and Ohya K 1994 J. Phys. Soc. Jpn. 63 3907
11 Vaughan J R M 1989 IEEE Trans. Electron Devices 36 1963
12 Nishimura K, Itotani T and Ohya K 1994 Jpn. J. Appl. Phys. 33 4727
13 Kawata J, Ohya K and Nishimura K 1995 J. Nucl. Mater. 222 997
14 Pivi M, King F K, Kirby R E, Raubenheimer T O, Stupakov G and Pimpec F L 2008 J. Appl. Phys. 104 104904
15 Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y, Zhu X X and Zhang Y P 2009 J. Appl. Phys. 105 123305
16 Chang C, Liu G Z, Huang H J, Chen C H and Fang J Y 2009 Phys. Plasmas 16 083501
17 Chang C, Liu G Z, Fang J Y, Tang C X, Huang H J, Chen C H, Zhang Q Y, Liang T Z, Zhu X X and Li J W 2010 Laser and Particle Beams 28 185
18 Chang C, Li Y D, Verboncoeur J, Liu Y S and Liu C L 2017 Phys. Plasmas 24 040702
19 Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B and Cui W Z 2013 J. Appl. Phys. 114 104905
20 Ye M, Li Y, He Y N and Daneshmand M 2017 Phys. Plasmas 24 052109
21 Cao M, Zhang N, Hu T C, Wang F and Cui W Z 2015 J. Phys. D 48 55501
22 Zhang N, Cao M, Cui W Z and Hu T C 2017 Jpn. J. Appl. Phys. 56 075802
23 Majumdar A and Bhushan B 1991 J. Tribology 113 1
24 Thomas T R, Rosen B G and Amini N 1999 Wear 232 41
25 Hasegawa M, Liu J, Okuda K and Nunobiki M 1996 Wear 192 40
26 Wu J J 2000 Wear 239 36
27 Li Y G, Mao S F, Li H M, Xiao S M and Ding Z J 2008 J. Appl. Phys. 104 064901
28 Zbigniew C, Danny O M, Alton R and David C J 1990 J. Appl. Phys. 68 3066
29 Penn D R 1987 Phys. Rev. B 35 482
30 Vicente C 2017 IEEE International Symposium on Electromagnetic Compatibility, August 4-12, 2017, Washington, USA, p. 1
31 Lin S, Yan Y J, Li Y D and Liu C L 2014 Acta Phys. Sin. 63 147902 (in Chinese)
32 Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D and Zhang J F 2014 Chin. Phys. B 23 048402
[1] An improved secondary electrons energy spectrum model and its application in multipactor discharge
Wan-Zhao Cui(崔万照), Heng Zhang(张恒), Yun Li(李韵), Yun He(何鋆), Qi Wang(王琪), Hong-Tai Zhang(张洪太), Hong-Guang Wang(王洪广), Jing Yang(杨晶). Chin. Phys. B, 2018, 27(3): 038401.
[2] An efficient multipaction suppression method in microwave components for space application
Wan-Zhao Cui(崔万照), Yun Li(李韵), Jing Yang(杨晶), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Rui Wang(王瑞), Na Zhang(张娜), Hong-Tai Zhang(张洪太), Yong-Ning He(贺永宁). Chin. Phys. B, 2016, 25(6): 068401.
[3] A hybrid mode of one- and two-surface multipactor on grooved dielectric surface
Li-Bing Cai(蔡利兵), Jian-Guo Wang(王建国), Guo-Xin Cheng(程国新), Xiang-Qin Zhu(朱湘琴). Chin. Phys. B, 2016, 25(2): 025203.
[4] Three-dimensional simulation method of multipactor in microwave components for high-power space application
Li Yun, Cui Wan-Zhao, Zhang Na, Wang Xin-Bo, Wang Hong-Guang, Li Yong-Dong, Zhang Jian-Feng. Chin. Phys. B, 2014, 23(4): 048402.
[5] Effects of the insulated magnetic field and oblique incidence of electrons on the multipactor in MILO
Fan Jie-Qing, Hao Jian-Hong. Chin. Phys. B, 2011, 20(6): 068402.
[6] The charging stability of different silica glasses studied by measuring the secondary electron emission yield
Zhao Su-Ling, Bertrand Poumellec. Chin. Phys. B, 2011, 20(3): 037901.
No Suggested Reading articles found!